LED Pulser

This document summarizes the performance characteristics of the proposed LED Pulser (Figure 1) taken at the Physics Department – Nuclear and Particle Sector, University of Athens, on 22-2-2008.

Equipment used:

Oscilloscope: TDS3024B Tektronix DPO (200MHz, 2.5 GS/s) Photomultiplier: (specs) Pulser PCB construction: SMT (1206, 0805 form factors), single-sided board DC Voltmeter: (specs) Function Generator: 5 MHz

Circuit 01b – Capacitor discharge via LED

Figure 1: Proposed LED Pulser (version 01b)

Operation

The source voltage (V_s) is applied. After the capacitor has charged up to V_s (via R_c and R_d), a trigger signal (Trig) is applied to the transistor switch (Q). On the leading edge of the trigger, the capacitor is discharged via the LED to produce a short light pulse.

Components

Blue LED

Avago HSMR-C170, SMT, $V_f = 3.4 - 3.9V$, 20mA, 18mcd, $V_R = 5V$, 110pF @ 1MHz, High emission, InGaN, Package: untinted, diffused. Peak wavelength (typ) $\lambda_{peak} = 469$ nm. Luminous intensity $I_V(mcd)$ @20 mA = 18 (min) to 55 (typ). Viewing angle $2\theta_{1/2}=140^{\circ}$, Luminous efficiency η_V (lm/W) = 88 (typ).

Green LED

Data not available.

BFR92P

NPN RF, Infineon, SOT-23, $V_{CEO} = 15V$, $V_{CES} = 20V$, $V_{CBO} = 20V$, $V_{EBO} = 2.5V$, $I_C = 45mA$, $I_B = 4mA$, $f_T = 3.5 - 5$ GHz, TR=1.2ns, TF=27ps, $h_{FE} = 70-100-140$ @ $I_C = 15mA$, $V_{CE} = 8V$.