

Thomas Jefferson National Accelerator Facility

 Page 1

CLAS12 Software

D.P. Weygand

Thomas Jefferson National Accelerator Facility

Thomas Jefferson National Accelerator Facility

 Page 2

Clas12
ClaRA
Simulation

 GEMC
CCDB
Geometry Service
Event Display
Tracking

 Socrat
 SOT
 Gen III

Event Reconstruction
Post-Reconstruction Data Access

 Data-Mining
Slow Controls
Documentation

 Doxygen
 Javadoc

Testing/Authentication

Detector Subsystems
 (Reconstruction and Calibration)
 EC
 PCAL
 FTOF
 CTOF
 LTCC
 HTCC
OnLine
Code Management
 SVN
 Bug Reporting
 Support
Visualization Services
Support Packages
 Eg.
 CLHEP
 Root
 jHepWork

Software Entropy Why SOA?

•  Growing	 so+ware	 complexity	
•  Compila6on	 and	 portability	 problems	
•  Maintenance	 and	 debugging	 difficul6es	 	
•  Scaling	 issues	

•  Author	 vola6lity	
•  Difficulty	 enforcing	 standards	
•  Drop-‐out	 authors	

•  OS	 uniformity	 problems	
•  Difficulty	 mee6ng	 the	 requirements	 by	

collabora6ng	 Universi6es	 	
•  Language	 uniformity	 problems	

•  Contribu6ons	 in	 various	 High	 Level	
Languages	 	

•  Steep	 learning	 curve	 to	 operate	 the	
so+ware	

•  Technology	 uniformity	 requirements	
•  Users/contributors	 qualifica6on	
•  Coherent	 documenta6on	 so+ware	

applica6ons	

Compu6ng	 Challenges	 and	 Complica6ons	

Long	 life6me,	 evolving	 technologies	
•  Complexity	 through	 simplicity	

•  Build	 complex	 applica6ons	 using	 small	 and	
simple	 components.	 	

•  Enhance	 u6liza6on,	 accessibility,	 contribu6on	 and	
collabora6on	

•  Reusability	 of	 components	 	 	
•  Integra6on	 of	 legacy	 and	 /or	 foreign	

components	
•  On-‐demand	 data	 processing.	
•  Loca6on	 independent	 resource	 pooling.	

•  Mul6-‐Threading	 	
•  Effec6ve	 u6liza6on	 of	 mul6core	 processor	

systems.	 	

CLAS	 Reconstruc6on	 Framework	 (ClaRa)	

	
DCClusterFinder	

	

	
DCRoadsInClusterFinder	

	

	
DCRegionSegmentFinder	

	

	
DCTrackCandidateFinder	

	

	
FMTHitsToTrackSegment	

	

	
ForwardKalmanFilter	

	
Tr
an
sie

nt
	 D
at
a	
St
or
ag
e.
	 	 	
	 S
ha
re
d	
m
em

or
y	

	
BSMTHitFilter	

	

	
BSMTMergeHits	

	

	
PointHitFinder	

	

	
HoughTransform	

	

	
HelixTrackEs6mator	

	

	
TrackFiYer	

	

Tr
an
sie

nt
	 D
at
a	
St
or
ag
e.
	 	 	
	 S
ha
re
d	
m
em

or
y	

	
ECStripsCreator	

	

	
ECHitsFinder	

	

	
ForwardTOFReconstruc6on	

	

	 	 	
	 S
ha
re
d	
m
em

or
y	

	
Par6cleIden6fica6on	

	

	 	 	 	

FT
O
F	

PI
D	

EC	
Central	 Tracking	 Forward	 Tracking	

Pe
rm

an
en

t	 S
to
ra
ge
	

Ph
ys
ic
s	 D

at
a	
Pr
oc
es
sin

g	
Ap

pl
ic
a6

on
	 O
rc
he

st
ra
to
r	

C++	 VM	

Cloud	 Node	 1	

Cloud	 Node	 n	

JVM	

Event	 Reconstruc6on	

Grid vs. Cloud Computing

Google Trends.
Scale is based on the average worldwide traffic of cloud computing in all years.

Cloud Computing
Grid Computing

Google Trends

Thomas Jefferson National Accelerator Facility

 Page 8

8

y = 0.0076x + 0.0035
R² = 0.9969

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1/
Tp

 [m
se

c]

Number of Cores

CLARA SOT performance in an Intel Xeon 2x6 Westmere
processor based node

MultiThreading with one 1 Task Service (SOT) running in a single node

9

y = 0.0845x + 0.0963
R² = 0.9939

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1/
Tp

 [m
se

c]

Number of Nodes

CLARA SOT performance in a cluster

Parallel distributed processing 17 node Xeon 2x6 Westmere CPU

•  Service communication latency
•  careful analysis of the criticality of a service, introduce built-in

tolerance for variations in network service response times
•  Evolutionary development: Building and updating

continuously.
•  Management and administration. Strict service canonization

rules
•  The workloads of different clients may reside

concurrently on the same service that can potentially
introduce “pileups”.

•  Solve by introducing service access policies
•  Network security

•  Client authentication and message encryption

Risks: SOA

Event Reconstruction

Tracking

EC/Pcal

TOF

LTCC

HTCC

Central part of the event reconstruction

π/e discrimination

K/π/p discrimination

e γ

K/π discrimination

Reconstrucion

Calibration

Tracking

Reconstruction
 No Legacy Tracking code from CLAS6
 First version was ROOT-based code: Socrat
 Socrat was rewritten (OO & SOA) à SOT
 Third generation tracking code currently under development

Calibration
 Algorithms will be based on CLAS6 legacy
 Will be converted to Object-Oriented language
 and SOA compliant

Thomas Jefferson National Accelerator Facility

 Page 12

Reconstruction in DC
Starting point (uncorrelated background, just for illustration):

1)  Find track candidates (patterns)
2)  Find road(s) in each cluster
3)  Fit of the track candidates (KF)

SOCRAT 05/25/2010 S.Procureur

Thomas Jefferson National Accelerator Facility

 Page 13

Track finding

1) Find clusters (in each superlayer)

2) Find track segments (in each region)

3) Find track candidates (3 regions)

Corresponding structures in Socrat:
DChit,	 DCcluster,	 DCTrackSegment,	
DCTrackCandidate	

SOCRAT 05/25/2010 S.Procureur

3rd Tracking Strategies
Ø Central Tracking

•  Hit Recognition
―  Central tracker strip ``intersection’’ determination

― not on the same plane
―  i.e. trajectory-dependent
―  hence use iterative algorithm to

 improve hit position accuracy
 based on track’s angle of
 intersection with BST planes

•  Pattern Recognition
―  Hough Transform (ü)
―  Geometrical linking algorithm,

 Look-up tables, … (to be implemented and tested)
•  Track Fitting

―  Kalman Filter (ü)
― Global Fitting Methods (to be implemented and tested)

EC/PCal
Reconstruction

 Legacy code from CLAS6 rewritten à SOA/Java
 Currently part of the reconstruction suite

Calibration
 Algorithms based on CLAS6 legacy
 Converted to Object-Oriented language
 SOA compliant

FTOF/CTOF

Calibration
 Algorithms based on CLAS6 legacy
 Converted to Object-Oriented language
 SOA compliant

Reconstruction
 Legacy Algorithms from CLAS6
 Currently part of the reconstruction suite

Sample from FTOF/CTOF Calibration Suite

•  HTCC simulation in GEMC is completed
•  LTCC in GEMC is close to ready (M. Ungaro)

•  Software will be similar to what already exists for HTCC
•  HTCC reconstruction code (clustering algorithm) is fully

tested and working as a “plugin” to the “COAT” libraries
•  Fully tested with simulated data (gemc)

–  “Intermediate digitization”: sector, ring, half, #ph.e., time
•  Need “Full digitization”: crate, slot, channel, ADC, TDC to develop calibration

procedure
–  Behavior as expected

•  PID performance evaluated (consistent with previous estimates
from GEANT3)

HTCC/LTCC Software Status
No CLAS6 Legacy Reconstruction Code

Simulation/GEMC
Place Holder for GEMC 3-4 slides and movie theme music

One of our most mature software projects

Code Management

Subversion:
 Open source software community‘s replacement for cvs.

 Has many of the same features and employs the same no-lockout paradigm.
 Plug-ins are available for the popular integrated development
 environments, such as the widely used eclipse.
 This allows one to check in, check out, track changes, and merge
 differences with mouse-clicks in a development environment rather than through a

command line

Used by other Halls, DAQ

Code Release

GEMC: Healthy release cycle

Clara platform: Trivial to deploy

Reconstruction suite currently being patched

Thomas Jefferson National Accelerator Facility

 Page 22

Universal Software Tools
Root
CLHEP: C++ tools for HEP

jHepWork/freeHep
COLT: Java implementation of CLHEP
JAIDA
jMath: CLAS java mathematical/physics
tools
NumPy: Python Mathematical tools
SciPy: Python Numerical tools

Geant4: Particle tracking through material
CCDB: mysql based calibration and conditions
(and geometry) database (Shared with GlueX)
HDF5: NCSA developed data format

Standard IDE’s: Eclipse and NetBeans
bCNU/jevio Event Display

 (Shared with GlueX)

As in the current CLAS software system, the standard reconstruction suite of
services will be built daily, and the reconstruction package tested against a set of
standard datasets. The output will be reviewed by a software package and
checked against a standard, and crucial indicators of the reconstruction can be
stored in a database and tracked over time. Dramatic changes in the program
performance can then be easily identified, and with the software tracking
provided by the Subversion code repository unanticipated code changes can be
identified. In addition, at any level the individual code developer will be able to
check any version against the standard suite.
At least three types of data: the first is pure simulation, that is monte carlo
generated data through the CLAS12 detector without any detector resolution
included. Reconstruction of this data set should return exactly what was input;
any deviation is suspect and cause for special consideration. The second set of
standard data will be a persistent monte carlo data set with full simulation,
whose results should remain consistent with input parameters. Finally, varied
sets of actual data, fully testing as completely as possible all aspects of the
reconstruction software, will be utilized to track the code development.

Quality Assurance and Authentication

Developers:
 Java and C++ Abstract Classes allow simple implementation of services

 “COAT” plugins allow service implementation into the reconstruction chain

 Template examples in the repository

Data Analysis
 Deployment of a Clara Reconstruction Platform

 Reconstruction analysis will imply interaction with a cloud/clouds

 Access to data: Building on ODU data mining application

Access	 to	 the	 Collabora6on	

Documenta6on	

Primary Documentation is via CLAS wiki

Class documentation via

 doxygen (C++)
 Javadoc (java)

Bug Tracking via Mantis

CLAS12	 CPU/Storage	 Requirements	

CLAS12	 CPU/Storage	 Requirements	

What is the state of simulation, data acquisition, calibration and
analysis software, including usability and readiness from a user’s
perspective? Are the software plans complete, and is the scope
appropriate?
Is there adequate progress in software maturity, and is there a defined
set of goals leading towards full readiness ahead of production
running?

DCClusterFinder

DCRoadsInClusterFinder

DCRegionSegmentFinder

DCTrackCandidateFinder

FMTHitsToTrackSegment

ForwardKalmanFilter

Tr

an
si

en
t D

at
a

S
to

ra
ge

.
 S

ha
re

d
m

em
or

y

BSMTHitFilter

BSMTMergeHits

PointHitFinder

HoughTransform

HelixTrackEstimator

TrackFitter

Tr
an

si
en

t D
at

a
S

to
ra

ge
.

 S
ha

re
d

m
em

or
y

ECStripsCreator

ECHitsFinder

ForwardTOFReconstructio

n

 S

ha
re

d
m

em
or

y

ParticleIdentification

FT
O

F
P

ID

EC
Central Tracking Forward Tracking

P
er

m
an

en
t S

to
ra

ge

P
hy

si
cs

 D
at

a
P

ro
ce

ss
in

g
A

pp
lic

at
io

n
O

rc
he

st
ra

to
r

C++ VM

Cloud Node 1

Cloud Node n

JVM

Event Reconstruction

Event Reconstruction

Place Holder for Documentation

Have milestones been identified, and an appropriate set of tests been
incorporated into the milestones, to measure progress towards final
production running?

Place Holder for Project timeline

To what extent will software tools and components common
across the halls and/or with the wider HE/NP communities be
utilized? Are efforts towards commonality being made?

