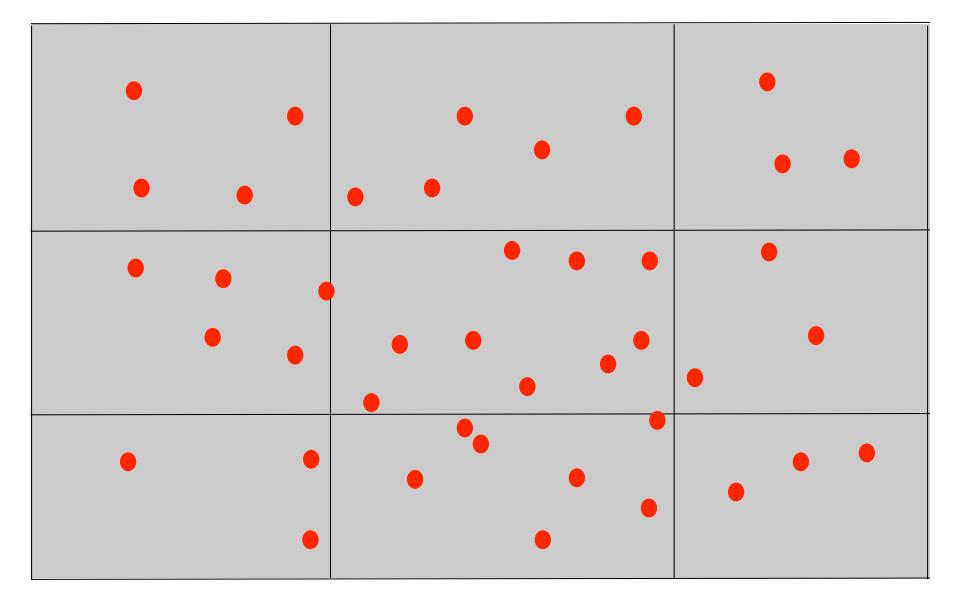
CLAS12 Software

D.P. Weygand

Thomas Jefferson National Accelerator Facility

Thomas Jefferson National Accelerator Facility


Clas12

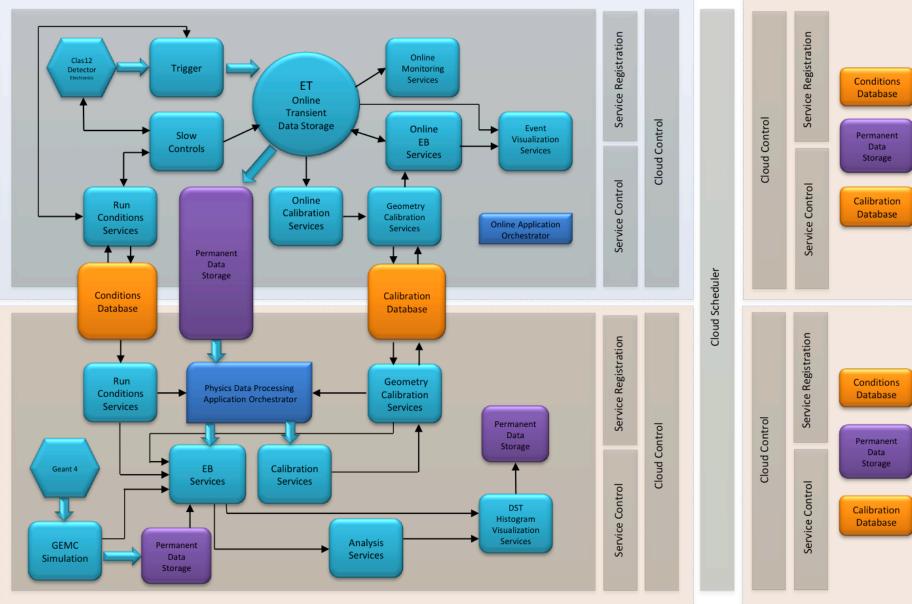
ClaRA **Detector Subsystems** (Reconstruction and Calibration) Simulation GEMC EC CCDB PCAL **Geometry Service** FTOF **Event Display** CTOF **ITCC** Tracking HTCC Socrat SOT OnLine **Code Management** Gen III **Event Reconstruction** SVN Post-Reconstruction Data Access **Bug Reporting** Data-Mining Support **Visualization Services** Slow Controls Documentation Support Packages Eg. Doxygen Javadoc **CLHEP** Testing/Authentication Root *i*HepWork office of Nuclear Phy **Thomas Jefferson National Accelerator Facility**

Why SOA?

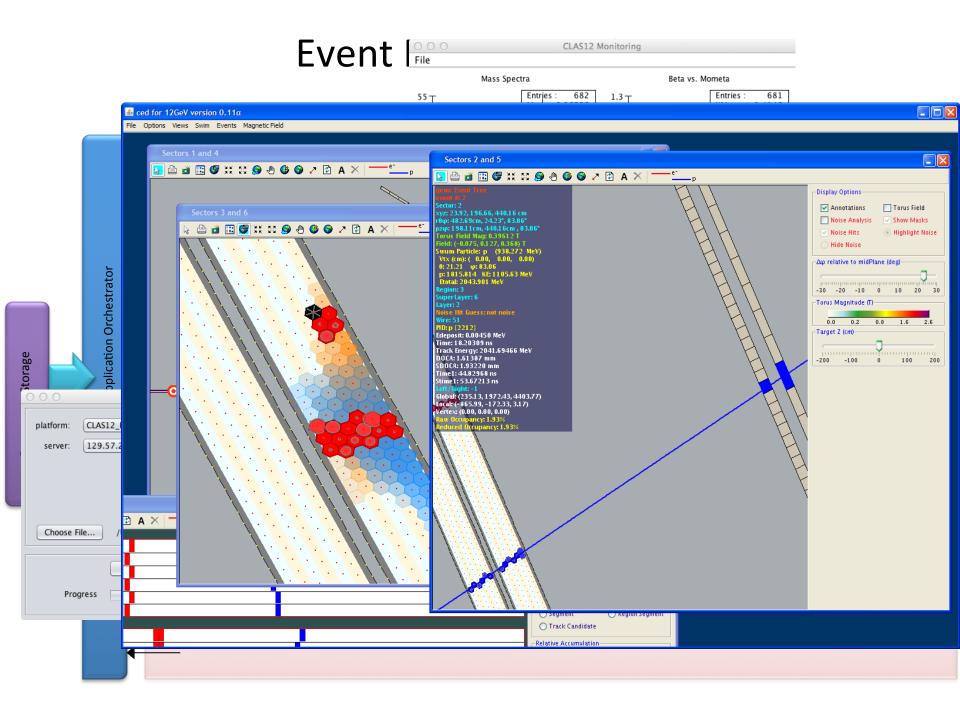
Software Entropy

Computing Challenges and Complications

- Growing software complexity
 - Compilation and portability problems
 - Maintenance and debugging difficulties
 - Scaling issues
- Author volatility
 - Difficulty enforcing standards
 - Drop-out authors
- OS uniformity problems
 - Difficulty meeting the requirements by collaborating Universities
- Language uniformity problems
 - Contributions in various High Level Languages
- Steep learning curve to operate the software
 - Technology uniformity requirements
 - Users/contributors qualification
 - Coherent documentation software applications

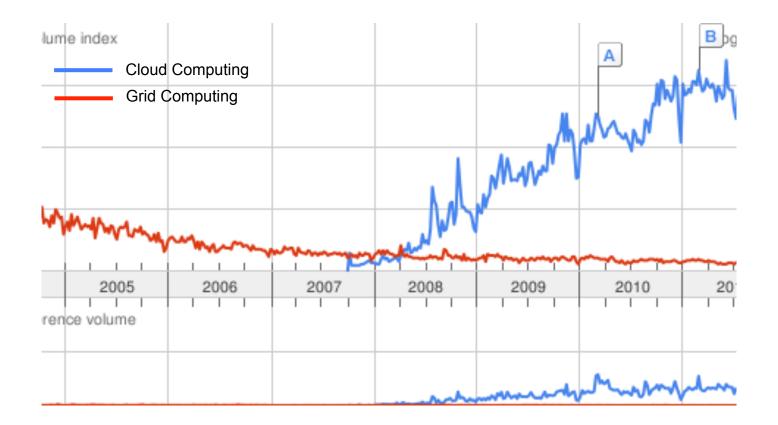

Long lifetime, evolving technologies

- Complexity through simplicity
 - Build complex applications using small and simple components.
- Enhance utilization, accessibility, contribution and collaboration
 - Reusability of components
 - Integration of legacy and /or foreign components
 - On-demand data processing.
 - Location independent resource pooling.
- Multi-Threading
 - Effective utilization of multicore processor systems.

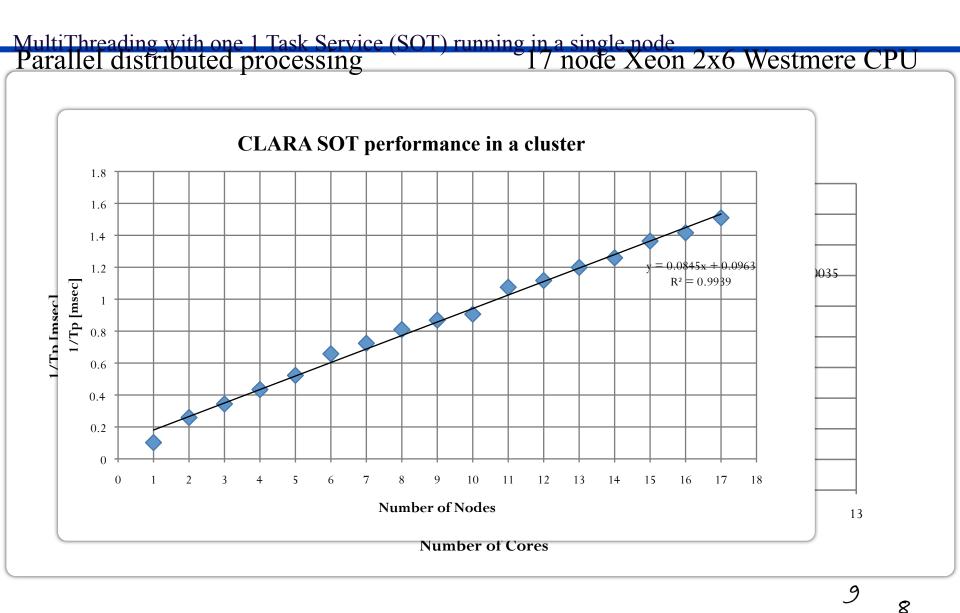

CLAS Reconstruction Framework (ClaRa)

Offline University Cloud 1

Offline University Cloud n



Offline JLAB Cloud



Grid vs. Cloud Computing

Google Trends

Google Trends. Scale is based on the average worldwide traffic of **cloud computing** in all years.

Risks: SOA

- Service communication latency
 - careful analysis of the criticality of a service, introduce built-in tolerance for variations in network service response times
- Evolutionary development: Building and updating continuously.
 - Management and administration. Strict service canonization rules
- The workloads of different clients may reside concurrently on the same service that can potentially introduce "pileups".
 - Solve by introducing service access policies
- Network security
 - Client authentication and message encryption

Event Reconstruction

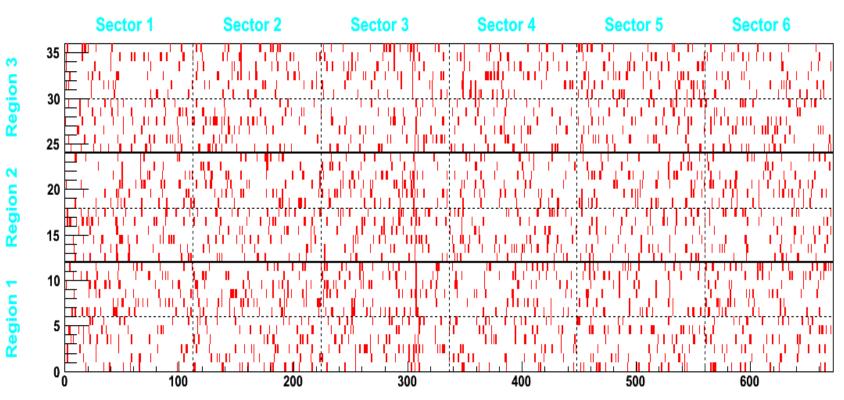
Reconstrucion

Calibration

Tracking	Central part of the event reconstruction
EC/Pcal	еγ
TOF	K/π/p discrimination
HTCC	π/e discrimination
LTCC	K/π discrimination

Tracking

Reconstruction


No Legacy Tracking code from CLAS6 First version was ROOT-based code: Socrat Socrat was rewritten (OO & SOA) → SOT Third generation tracking code currently under development

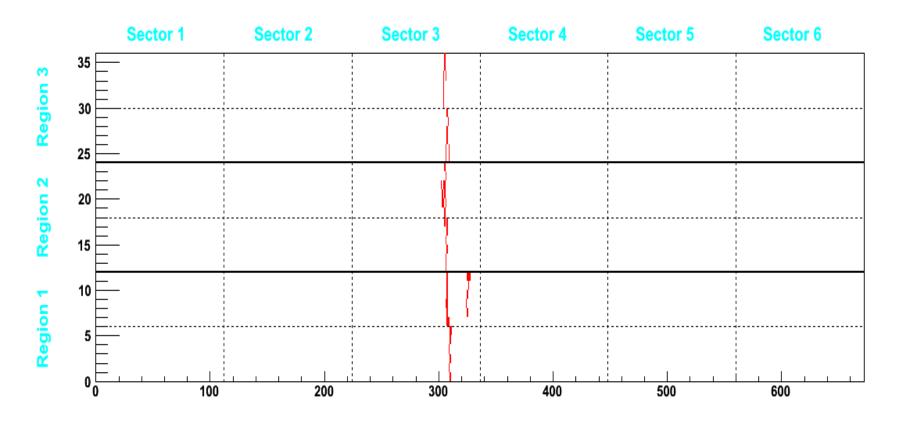
Calibration

Algorithms will be based on CLAS6 legacy Will be converted to Object-Oriented language and SOA compliant

Reconstruction in DC

Starting point (uncorrelated background, just for illustration):

S.Procureur


Office of

_____05/25/2010

Office of Nuclear Physic

SOCRAT

Track finding

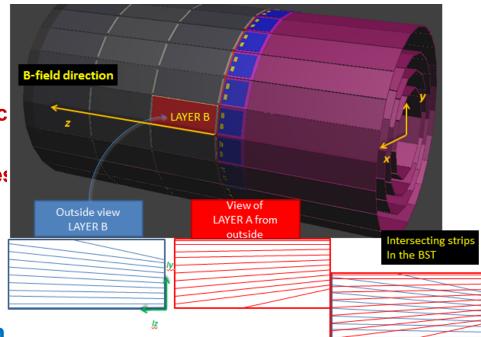
Corresponding structures in Socrat: DChit, DCcluster, DCTrackSegment, DCTrackCandidate

Office of

Office of Nuclear Physics

05/25/2010

3rd Tracking Strategies


Central Tracking

Hit Recognition

- Central tracker strip ``intersection" determination
 - not on the same plane
 - i.e. trajectory-dependent
 - hence use iterative algorithm to improve hit position accurac based on track's angle of intersection with BST planes
- Pattern Recognition
 - Hough Transform (✓)
 - Geometrical linking algorithm

Look-up tables, ... (to be implemented and tested)

- Track Fitting
 - Kalman Filter (✓)
 - -Global Fitting Methods (to be implemented and tested)

EC/PCal

Reconstruction

Legacy code from CLAS6 rewritten \rightarrow SOA/Java Currently part of the reconstruction suite

Calibration

Algorithms based on CLAS6 legacy Converted to Object-Oriented language SOA compliant

FTOF/CTOF

Reconstruction Legacy Algorithms from CLAS6 Currently part of the reconstruction suite

Calibration Algorithms based on CLAS6 legacy Converted to Object-Oriented language SOA compliant

Sample from FTOF/CTOF Calibration Suite

HTCC/LTCC Software Status

No CLAS6 Legacy Reconstruction Code

- HTCC simulation in GEMC is completed
- LTCC in GEMC is close to ready (M. Ungaro)
 - Software will be similar to what already exists for HTCC
- HTCC reconstruction code (clustering algorithm) is fully tested and working as a "plugin" to the "COAT" libraries
 - Fully tested with simulated data (gemc)
 - "Intermediate digitization": sector, ring, half, #ph.e., time
 - Need "Full digitization": crate, slot, channel, ADC, TDC to develop calibration procedure
 - Behavior as expected
 - PID performance evaluated (consistent with previous estimates from GEANT3)

Place Holder for GEMC 3-4 slides and movie theme music

Simulation/GEMC

One of our most mature software projects

Code Management

Subversion:

Open source software community's replacement for cvs. Has many of the same features and employs the same no-lockout paradigm. Plug-ins are available for the popular integrated development environments, such as the widely used eclipse.

This allows one to check in, check out, track changes, and merge differences with mouse-clicks in a development environment rather than through a command line

Used by other Halls, DAQ

Code Release

GEMC: Healthy release cycle

Clara platform: Trivial to deploy

Reconstruction suite currently being patched

Universal Software Tools

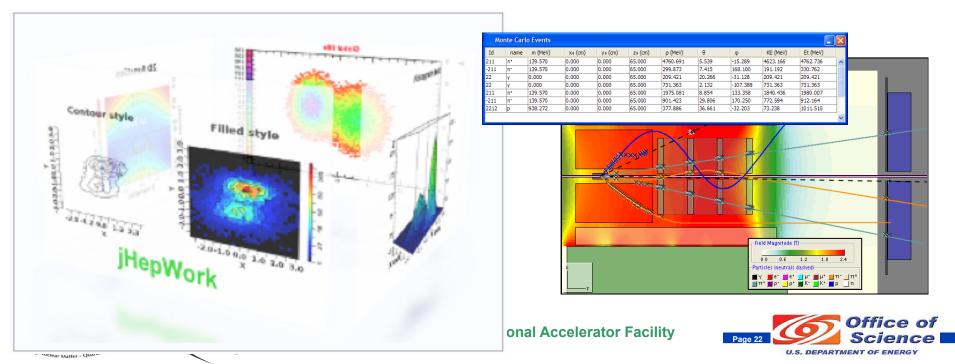
Root CLHEP: C++ tools for HEP

jHepWork/freeHep

COLT: Java implementation of CLHEP JAIDA

jMath: CLAS java mathematical/physics tools

NumPy: Python Mathematical tools


SciPy: Python Numerical tools

Geant4: Particle tracking through material

CCDB: mysql based calibration and conditions (and geometry) database (Shared with GlueX)

HDF5: NCSA developed data format

Standard IDE's: Eclipse and NetBeans bCNU/jevio Event Display (Shared with GlueX)

Quality Assurance and Authentication

As in the current CLAS software system, the standard reconstruction suite of services will be built daily, and the reconstruction package tested against a set of standard datasets. The output will be reviewed by a software package and checked against a standard, and crucial indicators of the reconstruction can be stored in a database and tracked over time. Dramatic changes in the program performance can then be easily identified, and with the software tracking provided by the Subversion code repository unanticipated code changes can be identified. In addition, at any level the individual code developer will be able to check any version against the standard suite.

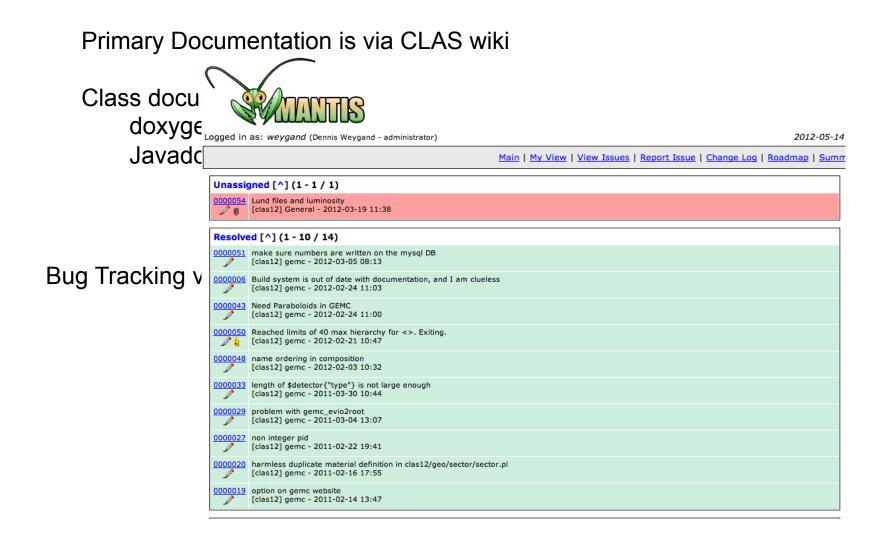
At least three types of data: the first is pure simulation, that is monte carlo generated data through the CLAS12 detector without any detector resolution included. Reconstruction of this data set should return exactly what was input; any deviation is suspect and cause for special consideration. The second set of standard data will be a persistent monte carlo data set with full simulation, whose results should remain consistent with input parameters. Finally, varied sets of actual data, fully testing as completely as possible all aspects of the reconstruction software, will be utilized to track the code development.

Access to the Collaboration

Developers:

Java and C++ Abstract Classes allow simple implementation of services

"COAT" plugins allow service implementation into the reconstruction chain


Template examples in the repository

Data Analysis Deployment of a Clara Reconstruction Platform

Reconstruction analysis will imply interaction with a cloud/clouds

Access to data: Building on ODU data mining application

Documentation

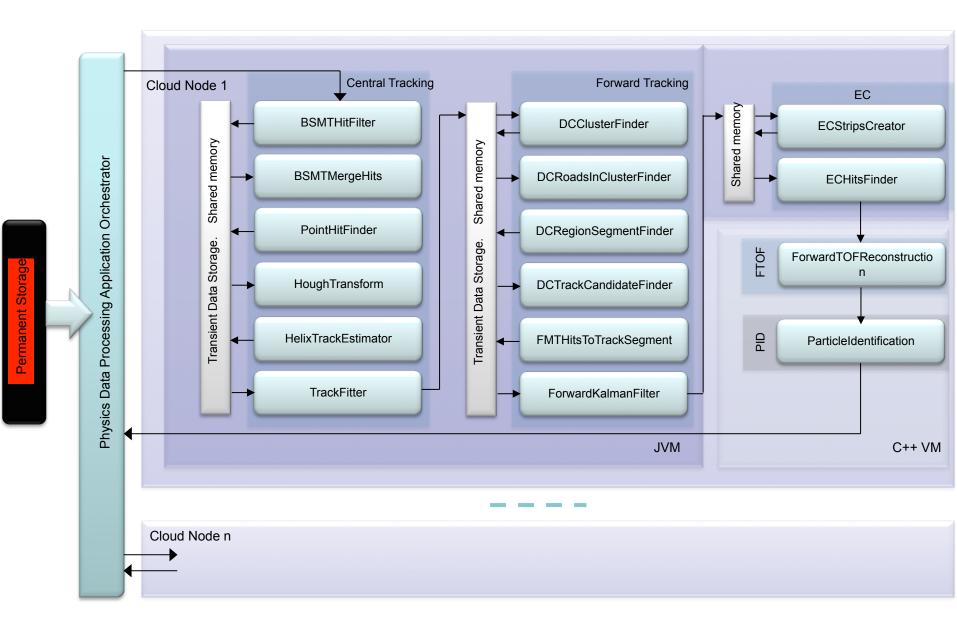
CLAS12 CPU/Storage Requirements

	Cores	Disk (TByte)	Tape (TByte/yr)
DAQ	-	-	1100
Calibration	127	-	-
Simulation	888	65	327
Reconstruction	393	370	3700
Analysis	463	370	370
Sum	1871	805	5497

			Units	2015	Reconstruction Analysis		
	1			CLAS12	Time to process one event/core	ms	67
1	2	Acquisition			Number of passes through data		1.70
3	3	Event rate	kHz	10	Output event size/input size	ratio	2.00
	4	Event size	k bytes	10	Percentage of output on work disk		10%
<u> Λ Γ</u>	5	Veekgrunning DII/C+	Mas C		Paquiromon	tc	1.05.10
CLAS	5 7	Veekgrunning PU/Sto	ræg	Se	Regenerenter en	ts	
	8				Cooked data to tape	ts TB/yr	1.2E+10 393 3701
9	8 9	Data Rate MB/S	MB/s	100	bedicate farm cores		393
9	8 9		MB/s MB/s	100	Cooked data to tape	TB/yr	393 3701 370
9	8 9 10	Data Rate MB/S	MB/s	100	Cooked data to tape Disk storage, calculated	TB/yr TB	393 3701

	Cores	Disk (TByte)	Tape (TByte/yr)
DAQ	-	-	1100
Calibration	127	-	-
Simulation	888	65	327
Reconstruction	393	370	3700
Analysis	463	370	370
Sum	1871	805	5497

Output event size	k bytes	50	
Fraction stored to disk	%	2%	
Fraction stored to tape	%	10%	
Multiplicity		1	
CPU time per year	s	2.8E+10	
Dedicated farm cores		888	
Work disk calculated	тв	70.	
Tape storage calculated	TB/yr	350.	
Average bandwidth	MB/s	111	
	Fraction stored to disk Fraction stored to tape Multiplicity CPU time per year Dedicated farm cores Work disk calculated Tape storage calculated	Fraction stored to disk % Fraction stored to tape % Multiplicity % CPU time per year \$ Dedicated farm cores % Work disk calculated TB Tape storage calculated TB/yr	Fraction stored to disk % 2% Fraction stored to tape % 10% Multiplicity 1 1 CPU time per year s 2.8E+10 Dedicated farm cores 888 Work disk calculated TB 70. Tape storage calculated TB/yr 350.


Core Summary		
DAQ	Cores	
Calibration	Cores	127
Simulation	Cores	888
Reconstruction Analysis	Cores	393
Post-Reconstruction Analysis	Cores	463
Physics Analysis	Cores	380
Sum	Cores	2,251

What is the state of simulation, data acquisition, calibration and analysis software, including usability and readiness from a user's perspective? Are the software plans complete, and is the scope appropriate? Is there adequate progress in software maturity, and is there a defined

set of goals leading towards full readiness ahead of production running?

Event Reconstruction

Event Reconstruction

0.00 -

0

2

0.6

000

0.0

0.2

0.4

🛓 ced for 12GeV version 0.11α File Options Views Swim Events Magnetic Field Sectors 2 and 5 💫 🖆 🗃 🖽 🕼 💥 🖄 🧐 🕀 🥮 🚱 🥕 🖄 A 🗡 en 属 🖆 🔠 🐨 💥 🖄 🙆 🕀 😂 🖉 🔯 A 🗡 | Display Options-Final # 2 Sector: 2 Syz: 23.92, 196.656, 440.16 cm rbg: 482.69cm, 24.23*, 83.06* pyze: 198.11cm, 440.16cm, 83.06* Torus Field Mag: 0.33612.7 Field: (-0.075, 0.127, 0.368) T Swum Particle: p (938.272 MeV) VTx (cm): (0.00, 0.00, 0.00) 0: 21.21 qs 83.06 p: 1815.814 KE 1105.63 MeV Botal: 2043.901 MeV Region: 3 Annotations Torus Field Noise Analysis Show Masks 🖕 🖆 📺 📴 👯 🕸 🧐 🕀 🎯 🔗 🖊 🖄 A 🗡 🔽 Noise Hits Highlight Noise 🔵 Hide Noise -Δφ relative to midPlane (deg) -30 -20 -10 0 10 20 30 egion: 3 iperLayer: 6 -Torus Magnitude (T)----Vire: 51 0.0 0.2 0.8 1.6 2.6 PID: p [2212] Edeposit: 0.00450 MeV -Target Z (cm)— Time: 18.20309 ns Track Energy: 2041.69466 MeV DOCA: 1.61387 mm -200 -100 0 100 200 SDOCA: 1.93220 mm Time1: 44.8296<u>8 ns</u> Stime1: 53.67213 ns Global: (235.13, 1972.43, 4403.77) Local: (-865.99, -172.33, 3.17) Vertex: (0.00, 0.00, 0.00) pancy: 1.93% Iccupancy: 1.93% 🗈 A 🗡 🔿 Track Candidate -Relative Accumulation--1.10.05 The Section of the

-1.0

Place Holder for Documentation

Have milestones been identified, and an appropriate set of tests been incorporated into the milestones, to measure progress towards final production running?

Place Holder for Project timeline

To what extent will software tools and components common across the halls and/or with the wider HE/NP communities be utilized? Are efforts towards commonality being made?