A Spin-Parity Analysis of the $\omega \pi^{0}$ Enhancement Photoproduced at GlueX

Gluef

Amy M. Schertz

2ine WILLIAM © MARY
Department of Physics, The College of William and Mary

ABSTRACT

The $\omega \pi^{0}$ system is studied in the reaction $\gamma p \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} p$. A preliminary
spin-parity analysis is able to qualitatively describe the uncorrected data, and spin-parity analysis is able to qualitatively describe the uncorrected data, and
indicates that the main contribution to the enhancement is consistent with a $J^{P}=1^{+}$axial vector state, with $J^{P}=1^{-}$vector background. This analysis provides an important stepping stone to analysis of the $\omega \pi^{+} \pi^{-}$system, which is implicated in exotic meson decay.

EXOTIC MESONS

A meson has been traditionally understood as a quark-antiquark pair. Such an A meson has been traditionally y understood as a quark-antiquark pair. Such an
object has quantum numbers J^{C} that must obey certain patterns. Lattice QCD object has quantum numbers
calculations (Ref. [2]) predict the existence of manifestly exotic meson states, which have quantum numbers that do not follow this pattern. One of the main goals of GlueX is to search for exotic meson signals.

THE GLUEX EXPERIMENT
GlueX is a photoproduction experiment performed at Jefferson Lab's newly upgraded 12 GeV accelerator. A 12 GeV electron beam is incident on a
diamond wafer, which produces a linearly polarized photon beam through diamond wafer, which produces a linearly polarized photon beam through
coherent bremsstrahlung. The photon beam is incident on a liquid hydrogen target, and the decay products are detected by the various detector components. The detector has nearly 4π coverage, which gives a ful reconstruction of the final state.

eX will allow for GlueX will allow for
mapping of the light meson mapping of the light meson
spectrum, and will play a key
ore in the search for exotic role in the search for exotic meson states. Current studie
include investigation of include investigation of polarization observables in
an effort to understand meson photoproduction mechanisms, which proceed through t-channel quasiparticle exchange as
the figure at left.

EVENT SELECTION AND WEIGHTING

All possible $\pi^{+} \pi^{-} \pi^{0} \pi^{0}$ combinations are considered. A kinematic fit is performed, and cuts are made on the beam energy and π^{0} mass. The 3π events
are plotted in a histogram, and a sideband subtraction is performed around the peak. The plots from Atkinson (Ref. [1]) are shown on the right for comparison.

The events in the 4π mass plot are then weighted according to the 3π mass, with the ω mass range receiving a weight of +1 and the side-bands receiving eight of -1

The 4π mass plot is then weighted with 25 moment functions of the angular variables, defined in terms of the Wigner D-functions:
$H_{I m L M}^{ \pm}\left(\theta, \phi, \theta_{H}, \phi_{H}\right)=\frac{1}{2} \Re\left\{D_{M m}^{L}(\phi, \theta, 0) D_{m 0}^{L}\left(\phi_{H}, \theta_{H}, 0\right) \pm(-1)^{L+M} D_{-M m}^{L} D_{m 0}^{L}\right\}$

ANGULAR DISTRIBUTION

In order to determine the quantum numbers of the $\omega \pi^{0}$ system, an analys
decay angles is needed. Atwo-sten decay process such described in terms of four angles, θ, ϕ, θ_{H}, and ϕ_{H}.

The angles θ and ϕ describe the direction of the ω particle in the $\omega \pi^{0}$ rest frame, while θ_{H} and ϕ_{H} describe the direction of the normal vector to the $\omega \rightarrow 3 \pi$ decay plane in the ω rest frame.
The $\sin ^{2}\left(\theta_{\mu}\right)$ component in The $\sin ^{2}\left(\theta_{H}\right)$ component in
the $\cos \left(\theta_{H}\right)$ distribution the $\cos \left(\theta_{H}\right)$ distribution
indicates that the dominant J^{P} state cannot be 0^{-}. The ϕ distribution shows a $\sin (\phi)$ contribution, which indicates interference between
helicities +1 and 0 .

FIT EQUATION

In order to extract information about the contributions matrix $\left(\rho_{\Lambda^{\prime}}^{i j}\right)$ and the decay amplitudes (F_{λ}^{i}) using to the $\omega \pi^{0}$ channel and compare to the results of Ref.
$[1]$, we fit the data with a function involving a sum over the Breit-Wigner amplitudes of the J^{P} states 1^{+} and $1^{-},\left\{\begin{array}{c}H^{+}(l m L M)=\sum_{i} \Re H_{i i}(\operatorname{lm} L M)\end{array}\right.$ and $1^{-},\left\{\begin{array}{l}-(l m L M)=2 \sum_{i>j} \Re H_{i j}(l m L M), ~\end{array}\right.$ where i and j stand for the different J^{P} states. These complex sums can be related to the production density

> matrix $\left(\rho_{M M^{\prime}}\right)$ and the decay amplitudes $\left(F_{\lambda}^{i}\right)$ using $H_{i j}(l i L M)=t_{L M}^{i j}(10 l 0|1\rangle)$. The function $t_{L M}^{i j *}$ is related to the production density matrix by $\left.t_{L M}^{i j *}=\left.\left(\frac{2 J_{j}+1}{2 J_{i}+1}\right)^{1 / 2} \Sigma_{\Lambda \Lambda^{\prime}} \rho_{\Lambda \Lambda^{\prime}}^{i j}\left\langle J_{j} \Lambda^{\prime} L M\right|\right|_{i} \Lambda\right\rangle$, and $f_{L I m}^{i j}$ is elated to the decay amplitudes by $f_{L l m}^{i j}=\sum_{\lambda \lambda^{\prime}} F_{\lambda}^{i} F_{\lambda^{\prime}}^{j *}\left\langle j_{j} \lambda^{\prime} L m \mid J_{i} \lambda\right\rangle\left\langle 1 \lambda^{\prime}\right| m|1 \lambda\rangle$.

RESULTS OF FIT

OUTLOOK

The GlueX data are described qualitatively by this model, which could be improved by performing a full acceptance correction, including more P^{s} states
and accounting for additional background contributions. Performing the fit in separate bins of $-t$ will also enhance the interpretation of the b_{1} production mechanism.
Currently transitioning to an analysis of $\omega \pi^{+} \pi^{-}$. The E852 collaboration reported an exotic signal in 2005 (Ref. [3]), in the reaction $\pi^{-} p$
$\pi^{+} \pi^{-} \pi^{-} \pi^{0} \pi^{0} p$, but a similar channel has not been analyzed in
 mass and the "bachelor" 2π mass, along with the corresponding E852 plots. The ω and η enhancements can boin be seen in the 3π mass distribution.

The 3π mass is plotted versus the 2π mass below

Below are the results from a partial wave analysis done by E852 (Ref. [3]), where a pair of $J^{P C}=1^{-+} b_{1} \pi$ enhancements and a pair of $\omega \rho$ enhancements ere reported.

REFERENCES
[1] M. Atkinson, et al. Nuclear Physics B, 243:1-28, 1984
[2] J. J. Dudek et al. Physical Review D, 88:094505, 2013 [3] M. Lu, et al. Physical Review Letters, 94:032002, 2005.

ACKNOWLEDGMENTS
This work is supported by the Department of Energy Early Career Award ontract DE-SC0018224.

