Charged Pion Polarizability Measured in $\gamma \gamma \rightarrow \pi^+ \pi^-$: The Hall D CPP Experiment

R. Miskimen, A. Muskarenkov UMass, Amherst

> D. Lawrence, E. Smith Jlab

> > S. Gevorkyan Dubna

Measure $\gamma A \rightarrow \pi^+ \pi^- A$ cross sections relative to $\gamma A \rightarrow \mu^+ \mu^- A$

Theory for e⁺e⁻ pair production: amplitudes in order of decreasing importance :

- (i) Bethe-Heitler pair production on the nucleus with atomic screening,
- (ii) pair production on atomic electrons
- (iii) QED radiative corrections of order α/π with respect to the dominant Bethe-Heitler term,
- (iv) nuclear incoherent production on protons
- (v) virtual Compton scattering, $\gamma A \rightarrow \gamma^* A \rightarrow e^+e^-A$

PRIMEX: experimental and theoretical cross sections agree within the experimental errors of ±0.58 (stat.) % ± 1.13 (sys.) % for single-arm $e^+(e^-)$ production on ${}^{12}C$.

Measure $\gamma A \rightarrow \pi^+ \pi^- A$ cross sections relative to $\gamma A \rightarrow \mu^+ \mu^- A$

Theory for $\mu^+\mu^-$ pair production when the <u>pair</u> is detected :

- (i) Bethe-Heitler pair production on the nucleus with atomic screening,
- (ii) pair production on atomic electrons-
- (iii) QED radiative corrections of order α/π with respect to the dominant Bethe-Heitler term,
- (iv) nuclear incoherent production on protons
- (v) virtual Compton scattering, $\gamma A \rightarrow \gamma^* A \rightarrow \mu^+ \mu^- A$
- Want Zα to be not so large for doing Coulomb corrections

• Azimuthal distribution of $\mu^+\mu^-$ system† measures photon polarization

$$\frac{d\sigma}{d\Omega_{\mu\mu}} \propto \left| \left(\vec{\varepsilon} \times \vec{q} \right) \cdot \vec{q} \right|^2 \approx \cos^2 \phi_{\mu\mu} = 1 + \cos 2\phi_{\mu\mu}$$

+ S. Bakmaev, et al., Phys. Lett. B 660 (2008) 494.

• Construct a relatively simple detector backing FCAL to augment charged pion detection

Questions:

- Can we use FCAL to detect charged pions with reliable efficiency?
- How big do our detectors need to be to detect muons (pions)?

Correction factors and uncertainties	Comments	Uncertainty in correction factor, $\Delta\sigma(\gamma\gamma{ o}\pi\pi)$
Statistical error in $M_{\gamma\gamma}$ bins @ 300, 400 and 500 MeV	5% RL lead target, 10 ⁷ photons/s, 50% acceptance, 10 days of running	1.2, 1.7, and 3.5%
(target thickness)·(photon flux)·(tracking eff.)·(trigger eff.)·(DT correction)	Normalize to $\sigma(\gamma A \rightarrow \mu^+ \mu^- A)$ cross sections. Theoretical uncertainty estimated at 1%	1% (Est)
$ ho^0$ background	Under study	TBD
$\mu^+\mu^-$ background in pion signal is 1.3%	u,v planes with cathode strip readout, each 95% efficient, 5:1 muon to pion ratio. Measure inefficiency with $\mu^+\mu^-$ events, subtract muon from pion yield	Small compared to 1.3%
98% efficiency for pion pair identification	Either pion punches through iron absorber and registers as muon, 2%. Measure this probability using $\gamma A \rightarrow \rho A$ events.	Small compared to 2%
One of the pions decays in flight, ~8%	Biggest uncertainty is probably from a pion decaying after the FDC's, resulting in a relatively low energy muon that stops in the iron absorber or misses MWPC ₂ ; would look like pion track.	TBD
accidental subtraction	Under study	TBD

Task list:

- Complete analysis of systematic errors in error table
- Influence of ρ^0 background on experimental errors \rightarrow running times
- Work through parameters of the muon system
- Submit draft proposal to collaboration mid-week