
Event Display

Tools for a JAVA based single
event display

David Heddle, CNU & JLAB, 2/25/09

Purpose of an event display

1.  Diagnostics, Diagnostics, Diagnostics
2.  Realistic Visualizations

 The first is significantly more important
than the second. The leverage is in
making an event display a better
diagnostic tool, not in making it more
realistic.†

† The fatal attraction, however, is always to make it more realistic.

User Requirements
•  Speed

–  A new event should display
quickly ~few hundred ms†

•  Ease of Use
–  options shouldn’t be buried

•  Easy to build/install
–  No dependencies, no third

party libraries
•  Stand alone mode
•  Event stream hookup
•  Drag ‘n Drop
•  Zooming/panning etc.

•  Useful views (displays)
–  Info more important than

realism. 3D only when
necessary.

•  Accumulated views
–  Display aggregation of

events
•  Mouse over

–  Convenient/useful point-
and-read

•  Plug-in for new views
•  No frozen GUI. Ever.
•  Configurable

† You can take a bit longer if you use double buffering, which will give the illusion of speed.

Software Requirements
•  OOP

–  It’s the 21st century
•  Platform agnostic

–  No more ignoring 90%
of the world’s
computers

•  Extensible
–  Add views without

recompiling (plug-ins)
•  Standards

–  “Standard is better than
better” (e.g., XML)

•  Double buffering

•  Maintainable
–  No macros, native calls,

generated code,
embedding, etc

•  SOA aware
–  (consumer & producer)

•  SOA fault tolerant
–  Work when services are

unreachable
•  Multithreaded

–  Non-GUI thread notifies
GUI for repaint

Technology Selections
•  JAVA 6
•  Swing, Java 3D

(calling Open GL)
•  Eclipse for IDE
•  Ant for build (rarely

needed)
•  Jars for distribution
•  XML for (most) data

exchange
•  Layer based drawing

•  Subversion for revision
control

•  Multiple Document
Interface (MDI) (desktop
& internal frames)

•  Interface-rich code
•  Generic attribute editing

(minimize dialogs)
•  Heads-up Display

(preserve real-estate)

Some proprietary dependencies

•  Clara API for web services
•  evio & CODA common event format

Highest level architecture

ced2

bCNU handles all the app
infrastructure, world ↔ local
transformations, polygon
rendering, rubber-banding,
DnD, etc. It knows nothing
about any physics detector. Or
Clara. Or evio. Or CODA.

swing

java 6

java 3D

ced2 knows CLAS geometry
and events. It knows nothing
about screen coordinates. This
piece could be replaced by
other event displays (e.g, “ded”,
or other applications.

bCNU

evio

Clara

A bit more detail

Geometry
service

Event
service

Cached
Data

Config‐
ura1on
XML

Event
Files

Other
Service

Other
Service

File System

Event
Stream

Image
Service

XML
Parsing

bCNU
jar

Clara
Service
backbone

Magnetic
Field
Service

In a nutshell
•  ced2 reads the geometry and creates world-

based Items (bCNU objects)
•  The Items get placed on z-ordered Layers
•  The Layers get drawn from front to back
•  The set of Layers may be a simple as:

– Detector
– Magnetic Field
– Event
– Annotation

bCNU package Structure
common drawable

component

attributes

config

environment

file

format

graphics

image

log

internationalization

math

mdi

menu

plugin

text

tracker

change

cell

container

headsup

item

layer

internationalization

toolbar

rubberband

undo

view

These three
are the most
important

To use this package
1.  You Instantiate a MdiApplication, which creates

a desktop.
2.  You design views (what do I want to display?)

Each view is an internal frame.
3.  You design layers (you can put everything on

one layer—or put everything on its own layer—
but optimal is ~handful of layers.)

4.  You implement items for the objects to be
rendered, add them to a layer, fill them with
data (model.)†

† bCNU “more or less” adheres to the Model-View-Controller (MVC) paradigm. As with all
paradigms, practical considerations sometimes make it impossible to live up to the ideal.

Layers HUD Desktop Toolbar Filetree View

Attribute Editor

Items

MdiApplication

1) Creating a MdiApplication
/**
 * Create a MdiApplication Multiple Document Interface).
 *
 * @param keyVals an optional variable length list of attributes in
 * type-value pairs. For example, AttributeType.TITLE, "my
 * application", AttributeType.CENTER, true, etc.
 */
public MdiApplication(Object... keyVals) {

The construct Object... keyVals represents a variable length argument list.
This is common throughout bCNU. The keyVals are (name, value) pairs.
The name is a String, and the value is any Java object. These are
collectively known as attributes, although properties would have been a
better name. This mechanism has two huge advantages:

 1) Arbitrary user-data can be supplied using the same signature.

 2) The attribute editing mechanism can be used to reduce the
 number of dialogs required.

Example (class Ced2 extends MdiApplication)

/**
 * Main program used for testing only.
 *
 * @param args the command line arguments.
 */
public static void main(String[] args) {

 Ced2 frame = new Ced2(AttributeType.NAME, "ced2",
 AttributeType.CENTER, true,
 AttributeType.CONFIGFILE, "ced_config.xml",
 AttributeType.FRACTION, 0.95,
 AttributeType.FILETREE, true,
 AttributeType.TILE, true,
 AttributeType.LOGVIEW, true,
 AttributeType.XMLTREEVIEW, true,
 AttributeType.TILESTRING, "ced for 12 GeV\nCNU");

 frame.setVisible(true);
}

2) Creating Views
/**
 * Create a base 2D view,
 * @param desktop the desktop that will hold this view.
 * @param keyVals the variable length list of attributes.
 */
public BaseView2D(JDesktopPane desktop, Object... keyVals) {

The desktop is accessible from the MdiApplication object
Below we create a StView, which extends a BaseView2D.

StView stview = new StView(ced2.getDesktop(),
 AttributeType.NAME, "Start Counter View",
 AttributeType.VISIBLE, true,
 AttributeType.BACKGROUND, new Color(64, 64, 64, 128),

 "My Attribute", myDataObject,

Every view will contain a layerDatabase that is a collection
of its layers. There is one default layer: AnnotationLayer.

Plugins: another way to create
views (using reflection)

In a nutshell, at startup†:

1. Scan all classes in ClassPath (a regexp filter is optional)
2. For any class that extends View, invoke the static method

getInstance(). This creates one instance.

†In principle it could be done in a timer while running—so a new view could be
dropped in the ClassPath and viola! it pops up.

bCNU.jar

ced2
executable jar

aUsers.jar

includes class
NeverB4SeenView that
extends View.

ClassPath

Creating Layers
 /**
 * Creates a BaseLayer with a given name.
 * @param layerDatabase the collection of layers for a view.
 * @param name the name of the layer.
 */

 public BaseLayer(LayerDatabase layerDatabase, String name) {

BaseLayer detectorLayer = new BaseLayer(
 stView.getLayerDatabase(), " Detector Layer");

BaseLayer eventLayer = new BaseLayer(
 stView.getLayerDatabase(), "Event Layer");

example

Creating Items—the meat & potatoes

drawable

item

BaseAnchorItem

BaseBackgroundItem

BaseTextItem

BaseRectangleItem

BaseEllipseItem

BaseItem

BasePointItem

Distance, angle from reference point

Something that covers the entire
background (mag field?, events?)

World based ellipse

Base class to extend if no other base
class fits

World based point (nominal target?)

BasePolygonItem World based polygon (workhorse)

World based rectangle

World based text

Example
The polygon annotation tool rubberbands a screen polygon. Those points
are converted to world coordinates. The collection of world coordinates is
used to create a BasePolygonItem.

/**
 * Create a polygon item, probably from a rubberband.
 * Use all default attributes.
 * @param pp the screen coordinates of the vertices.
 * @return the new polygon item.
 */
public BaseItem createPolygonItem(Point pp[]) {

 WorldPolygon wpoly = new WorldPolygon(this, pp);
 BaseLayer layer =
 layerDatabase.getOrCreateLayer(AnnotationLayerName);

 return new BasePolygonItem(layer,
 ItemAttributeType.WORLDPOLYGON, wpoly,
 ItemAttributeType.ROTATABLE, true,
 ItemAttributeType.TYPE, "Annotation",
 ItemAttributeType.RESIZABLE, true);

}

“this” must imple-
ment IConverter,
which means it
can convert world
↔ local

For a detector frame, something like
public BaseItem createDetectorFrame(String detectorName) {

//ask GeomtryService for the frame vertices
 WorldPolygon wpoly =

GeometryService.getFrameVertices(detectorName);

//get (or create, if necessary) the detector layer
 BaseLayer layer =
 layerDatabase.getOrCreateLayer(“DetectorLayer”);

//create the item

 return new BasePolygonItem(layer,
 ItemAttributeType.WORLDPOLYGON, wpoly,
 ItemAttributeType.ROTATABLE, false,
 ItemAttributeType.FILLCOLOR,

Color.gray,
 ItemAttributeType.LINECOLOR, Color.red,
 ItemAttributeType.RESIZABLE, false);

}

In practice, the BasePolygonItem is extended

public class DriftChamber extends BasePolygonItem {

public DriftChamber (BaseLayer layer,
 Object... keyVals) {
 super(layer, keyVals);

}

/**
 * The method where the custom drawing occurs. Draw only
 * the item, not its children.
 * @param g the Graphics context.
 */
@Override
protected void customDraw(Graphics g){

 //draw the cells within the frame

The frame vertices
and wire positions
were passed in
the attribute list.

A primer on how the drawing is performed
A JComponent (BaseContainer) is placed in the “business” part of each
view. Its paintComponent method is a loop over all layers, and each layer’s
draw method is a loop over all its items (which then loop over their children.)

@Override
public void paintComponent(Graphics g) {

 for (BaseLayer layer : layerDatabase) {
 if (layer.isVisible() {
 layer.draw(g);
 }
 }

}

public void draw(Graphics g) {
 for (Item item : items) {
 if (item.isVisible() {
 item.draw(g);
 }
 }

}

Layer
class’s
draw
method

More complicated under the hood
•  An “offscreen” Item that is drawn will take as

much CPU as if it were visible. Also, its “pick”
check can be expensive. Thus care is taken to
identify out-of-play Items†.
–  Items are asked for their outlines, which are checked

for intersection with the clip region (the region being
repainted.)

–  An invisible grid is imposed on the drawing area.
Each cell maintains a list of items that it intersects.
When picking the cell is determined, and only items in
the cell (in reverse order) are checked.

† In older systems (e.g., X-Windows) another check could be made: don’t
draw Items that are occluded by other items. This no longer works, because
of the widespread use of transparency.

If I made it this far…

•  Nobody is as surprised as I am. That’s
enough for one talk.

