Event Display

Tools for a JAVA based single
event display

David Heddle, CNU & JLAB, 2/25/09

Purpose of an event display

1. Diagnostics, Diagnostics, Diagnostics
2. Realistic Visualizations

The first is significantly more important
than the second. The leverage is in
making an event display a better
diagnostic tool, not in making it more
realistic.T

T The fatal attraction, however, is always to make it more realistic.

User Requirements

¢ Speed « Useful views (displays)
— A new event should display — Info more important than
quickly ~few hundred mst realism. 3D only when
« Ease of Use necessary.
— options shouldn’t be buried ||« Accumulated views
 Easy to build/install — Display aggregation of
— No dependencies, no third events
party libraries * Mouse over |
+ Stand alone mode ~ Sonvenientuseful point-
* Event stream hookup * Plug-in for new views
* Drag ‘'n Drop * No frozen GUI. Ever.
« Zooming/panning etc. » Configurable

TYou can take a bit longer if you use double buffering, which will give the illusion of speed.

Software Requirements

OOP
— It's the 21st century

Platform agnostic

— No more ignoring 90%
of the world’s
computers

Extensible

— Add views without
recompiling (plug-ins)

Standards

— “Standard is better than
better” (e.g., XML)

Double buffering

« Maintainable

— No macros, native calls,
generated code,
embedding, etc

« SOA aware

— (consumer & producer)

 SOA fault tolerant

— Work when services are
unreachable

 Multithreaded

— Non-GUI thread notifies
GUI for repaint

Technology Selections

JAVA 6

Swing, Java 3D
(calling Open GL)

Eclipse for IDE

Ant for build (rarely
needed)

Jars for distribution

XML for (most) data
exchange

Layer based drawing

« Subversion for revision
control

Multiple Document
Interface (MDI) (desktop
& internal frames)

Interface-rich code
Generic attribute editing
(minimize dialogs)
Heads-up Display
(preserve real-estate)

Some proprietary dependencies

 Clara API for web services
e evio & CODA common event format

Highest level architecture

Clara

evio

o

ced?2

swing

java 6

bCNU

ced2 knows CLAS geometry
and events. It knows nothing
about screen coordinates. This
piece could be replaced by
other event displays (e.g, “ded”,
or other applications.

java 3D '

bCNU handles all the app
infrastructure, world < local

transformations, polygon
| rendering, rubber-banding,

DnD, etc. It knows nothing
about any physics detector. Or
Clara. Or evio. Or CODA.

Clara
Service
backbone

Geometry
service

Event
service

Magnetic
Field
Service

Other
Service

Other
Service

A bit more detall

Image
Service
XML
Parsing

.0/branch1.0/branch 1.0/conflg/ced_config.xml

* 10Camurer A [Waming | info | Confio | ine | Fner | Finest
= —
2 Spotlight-¥100

@l
© & Applications
o bin XML Tvee)

The XML elements of a document.
B I Element: CED_Config
[character Data: *
[character pata: * *
B CJ Element: CLARA
[Antribute (name = 'name’, value = ‘default’)
[Character Data:* *
B] Element: BXFID
Character Data:*
@] Element: CMSG_PORT
Character Data:*
@ 3 Element: CLARA HOST
D) Character Data * *

tmp
- (& User Guides And Information
15 users

o & jogl_ext

9 3 DHeddle

cups

@ [Element: SESSION
[character Data: *

o & .5sh @ 3 Element: GEOMETRY_SERVICE,
:g subversion [Character Data: * *
- Tran [character Data:

B I Element: CLARA
D) Character Data: * *

- () Desktop
- (5 Documents
- (2 Downloads
o & GeminiLogs
o () Library

9 (3 Project Source
- (£ bCNUDevL.0
¢ (O cedDevl.0
¢ O pranchl.0
¢ (& branch 1.0
© [settings

Cached
Data

File System

In a nutshell

ced2 reads the geometry and creates world-
based Iltems (bCNU objects)

The Items get placed on z-ordered Layers
The Layers get drawn from front to back

The set of Layers may be a simple as:
— Detector

— Magnetic Field

— Event

— Annotation

bCNU package Structure

common
attributes internationalization
component log
config math
pnvironmen mdi
file menu
format plugin
graphics text
image tracker

A

drawable
cell rubberband
change toolbar
container undo
headsup view

in{

ernationalizatic

item

layer

These three

are the most

important

To use this package

1. You Instantiate a MdiApplication, which creates
a desktop.

2. You design views (what do | want to display?)
Each view is an internal frame.

3. You design layers (you can put everything on
one layer—or put everything on its own layer—
but optimal is ~handful of layers.)

4. You implement items for the objects to be
rendered, add them to a layer, fill them with
data (model.)?

T bCNU “more or less” adheres to the Model-View-Controller (MVC) paradigm. As with all
paradigms, practical considerations sometimes make it impossible to live up to the ideal.

MdiApplication

leon

View Option

(=03 My Computer
== c\

L) .ssh
[#-{C7) ADRG
#-{5) ant-1.7.0
#-{7) ant-1.7.1
[#-{7) ArcGIS
-{) Config.Msi
H-{C7) cygwin
-7 dell
H-{7) dev
£-{C7) Documents and Settings
[#-{) drivers
{7 eclipse_ganymede
H-{7) emacs
g h

{05 1386
[#-{-7) Java Decompiler
[#-{5) JedaDev
[#-{C5) LeonDev
[+ Qj LeonWorkspace

L
[#-{C5) MSOCache

t-{C7) Netgear
{5 Perl

-{7) Program Files
[+ ﬂj RECYCLER
[#-{C7) spartddev
[#-{-5) Sproul Apologetics
{7 stiletto
[#-{C) StilettoDev
{7 System Volume Informatic
=-7 temp
[assets
[5) createdShapeFiles
(=) from Ahmed
(-5 sdh_cpp
[#+(7) shapefiles
|5y stm1data
[#(7) vvshapefiles
- [5] AES_test1, me
a
D pennsyivanla me
#-{C5) WINDOWS
#-=3 D\

Filetree

Layers

View

Toolbar

HUD

Desktop

Def :nded Area [no name]

PEp Layers

2D Map | 3D Map|

EE

Ned @

Day-Night

Graticule

ADRG

Rivers

Lakes

Display Control

BMD Resuts [] BMC3
Impact Grids Tasks
[] intercepts Drawn ftems Assets
NAI Names NAI Grids

Unit Names
[] Track Pts

NAI Extent

NAlRange] NAI Conidors [Deconfliction

Radar Range || Radar Max

[] Temain

Progress

Checkist

O O

Thr Grd Sns Wpn

Properties

Property
LOCKED

FILLCOLOR
LINECOLOR

SYMBOLSIZE 8

LOCATION 35.3345, 128.1653

SYMBOL

Attribute

HZONG O SR ODOEZA X sk 2 038k 08] [elev 368 | &

1

rent: true

1) Creating a MdiApplication

/**

* Create a MdiApplication Multiple Document Interface).
*

* @param keyVals an optional variable length list of attributes in

* type-value pairs. For example, AttributeType.TITLE, "my
* application", AttributeType.CENTER, true, etc.
*/

public MdiApplication(Object... keyVals) {

The construct Object... keyVals represents a variable length argument list.
This is common throughout bCNU. The keyVals are (name, value) pairs.
The name is a String, and the value is any Java object. These are
collectively known as attributes, although properties would have been a
better name. This mechanism has two huge advantages:

1) Arbitrary user-data can be supplied using the same signature.

2) The attribute editing mechanism can be used to reduce the
number of dialogs required.

Example (class Ced2 extends MdiApplication)

/**
* Main program used for testing only.
*
* (@param args the command line arguments.
*/
public static void main (String[] args) {
Ced2 frame = new Ced2 (AttributeType.NAME, "ced2",
AttributeType.CENTER, true,
AttributeType.CONFIGFILE, "ced config.xml",
AttributeType. FRACTION, 0.95,
AttributeType. FILETREE, true,
AttributeType.TILE, true,
AttributeType.LOGVIEW, true,
AttributeType.XMLTREEVIEW, true,
AttributeType.TILESTRING, "ced for 12 GeV\nCNU");

frame.setVisible (true) ;

2) Creating Views

/**
* Create a base 2D view,
* @param desktop the desktop that will hold this view.
* @param keyVals the variable length list of attributes.
*/
public BaseView2D (JDesktopPane desktop, Object... keyVals) {

The desktop is accessible from the MdiApplication object
Below we create a StView, which extends a BaseView2D.

StView stview = new StView (ced2.getDesktop(),
AttributeType.NAME, "Start Counter View",
AttributeType.VISIBLE, true,
AttributeType.BACKGROUND, new Color (64, 64, 64, 128),
"My Attribute", myDataObject,

Every view will contain a layerDatabase that is a collection
of its layers. There is one default layer: AnnotationLayer.

Plugins: another way to create
views (using reflection)

In a nutshell, at startupf:

1. Scan all classes in ClassPath (a regexp filter is optional)
2. For any class that extends View, invoke the static method
getinstance(). This creates one instance.

ClassPath -

ced2

includes class
NeverB4SeenView that
extends View.

executable jar

TIn principle it could be done in a timer while running—so a new view could be
dropped in the ClassPath and viola! it pops up.

Creating Layers

/**

* Creates a Baselayer with a given name.
* @param layerDatabase the collection of layers for a view.
* @param name the name of the layer.

*/

public Baselayer (LayerDatabase layerDatabase, String name) ({

example

BaselLayer detectorLayer = new Baselayer (
stView.getLayerDatabase (), " Detector Layer");

Baselayer eventlayer = new Baselayer (
stView.getLayerDatabase (), "Event Layer") ;

Creating ltems—the meat & potatoes

drawable

»
L

BaseAnchorltem

Distance, angle from reference point

B

aseBackgroundltel

m

-...| Something that covers the entire

background (mag field?, events?)

item

A 4

BasekEllipseltem

-1 World based ellipse

A 4

Baseltem

-.._| Base class to extend if no other base

class fits

BasePointltem

World based point (hominal target?)

A 4

BasePolygonitem

World based polygon (workhorse)

\ 4

BaseRectangleltem

World based rectangle

\ 4

BaseTextltem

World based text

Example

The polygon annotation tool rubberbands a screen polygon. Those points
are converted to world coordinates. The collection of world coordinates is
used to create a BasePolygonltem.

“this” must imple-
ment IConverter,
which means it
can convert world
< local

/**

* Create a polygon item, probably from a rubberband.
* Use all default attributes.

* @param pp the screen coordinates of the vertices.
* @return the new polygon item.

*/
public BaseItem createPolygonItem(Point pp[]) { ’/////,
WorldPolygon wpoly = new WorldPolygon (this, pp):

BaselLayer layer =
layerDatabase.getOrCreatelayer (AnnotationLayerName) ;

return new BasePolygonItem(layer,
ItemAttributeType . WORLDPOLYGON, wpoly,
ItemAttributeType.ROTATABLE, true,
ItemAttributeType.TYPE, "Annotation",
ItemAttributeType.RESIZABLE, true);

For a detector frame, something like

public Baseltem createDetectorFrame (String detectorName) ({

//ask GeomtryService for the frame vertices

WorldPolygon wpoly =
GeometryService.getFrameVertices (detectorName) ;

//get (or create, if necessary) the detector layer

Baselayer layer =
layerDatabase.getOrCreatelayer ("DetectorLayer”) ;

//create the item
return new BasePolygonItem(layer,
ItemAttributeType. WORLDPOLYGON, wpoly,
ItemAttributeType.ROTATABLE, false,

ItemAttributeType.FILLCOLOR,
Color.gray,

ItemAttributeType.LINECOLOR, Color.red,
ItemAttributeType.RESIZABLE, false);

In practice, the BasePolygonltem is extended

public class DriftChamber extends BasePolygonItem ({

public DriftChamber (BaselLayer layer,

Object... keyVals The frame vertices

super (layer, keyVals); \ \?vr;?ewpi)r:szgji:ir?ns

} the attribute list.

/**
* The method where the custom drawing occurs. Draw only
* the item, not its children.

* @param g the Graphics context.

*/

@Override

protected void customDraw (Graphics g) {
//draw the cells within the frame

A primer on how the drawing is performed

A JComponent (BaseContainer) is placed in the “business” part of each
view. Its paintComponent method is a loop over all layers, and each layer’s
draw method is a loop over all its items (which then loop over their children.)

@Override
public void paintComponent (Graphics g) {
for (Baselayer layer : layerDatabase) ({
if (layer.isVisible() {
layer .draw(qg) ;

}

}

— public void draw(Graphics g) {
Iy ’ for (Item item : items) ({
class's if (item.isVisible() ({

draw . .
method } item.draw(qg) ;

More complicated under the hood

* An “offscreen” ltem that is drawn will take as
much CPU as if it were visible. Also, its “pick”
check can be expensive. Thus care is taken to
identify out-of-play IltemstT.

— ltems are asked for their outlines, which are checked

for intersection with the clip region (the region being
repainted.)

— An invisible grid is imposed on the drawing area.
Each cell maintains a list of items that it intersects.
When picking the cell is determined, and only items in
the cell (in reverse order) are checked.

TIn older systems (e.g., X-Windows) another check could be made: don’t

draw ltems that are occluded by other items. This no longer works, because
of the widespread use of transparency.

If | made it this far...

* Nobody is as surprised as | am. That's
enough for one talk.

