Charged & Neutral Pion Polarizability Experiments Run Report September 21, 2022 GlueX Collaboration Meeting

Andrew Schick

With: Alex Austregesilo, Albert Fabrizi, David Hornidge, Mark Ito, Nikhil Kalra, Ilya Larin, David Lawrence, Rory Miskimen, Elton Smith, Simon Taylor, Beni Zihlmann

"Thought experiment": measure pion electromagnetic polarizability by placing pion in a capacitor at very high electric field

Magnetic polarizability $= \beta \approx 10^{-4} \times Volume$

Jefferson Lab

Polarizabilities encode information about the excited states of hadrons: test effective field theories for QCD

CPP and NPP experiment at Jlab GlueX

CPP and NPP Running Conditions

Configuration	Nominal GlueX I	Charged Pion Polarizability	Neutral Pion Polarizability			
Electron Beam Energy	11.6 GeV	11.6 GeV	11.6 GeV			
Coherent Peak Energy	8.4-9.0 GeV	4.5-6 GeV	4.5-6 GeV			
Current	150 nA	30 nA	30 nA			
Radiator thickness	50 μm diamond	50 μm diamond	50 μm diamond			
Collimator aperture	5 mm	3.4 mm	3.4 mm			
Peak polarization	35%	73%	73%			
Tagging ratio	0.6	0.56	0.56			
Flux 5.5-6.0 GeV	-	11 MHz	11 MHz			
Flux 8.4-9.0 GeV	20 MHz	-	-			
Flux 0.3-11.3 GeV	367 MHz	56 MHz	56 MHz			
Target Position	65 cm	1 cm	1 cm			
Target, length	LH2, 30 cm	²⁰⁸ Pb, 0.03 cm	²⁰⁸ Pb, 0.03 cm			
Start Counter and DIRC	Nominal	Removed	Removed			
Tagger microscope	Nominal for Peak at 9 GeV	Moved for Peak at 6 GeV	Moved for Peak at 6 GeV			
Muon Detector	None	Installed behind FCAL	Not needed			
Trigger	FCAL/BCAL (40 kHz)	TOF (30 kHz)	FCAL/BCAL (10 kHz)			

University of Massachusetts Amherst

Andrew Schick

CPP/NPP Run Report GlueX Collaboration Meeting

Early run activities/commissioning

In order to perform the CPP and NPP experiments, the GlueX detector was modified in many ways and complemented with a new muon detector system. Early in the run we completed the following activities:

- 1. Installed and commissioned ten new detectors downstream of GlueX (6 MWPCs and 4 TOF scintillators) including massive iron absorbers between MWPC planes in a new muon detector system.
- 2. Moved the tagger microscope from its 9 GeV location for GlueX down to 6 GeV and verified operation.
- 3. Aligned a new diamond (JD70-103) and verified 70% polarization in the coherent peak.
- 4. Developed and commissioned a new trigger based on the TOF system to trigger on two charged particles.
- 5. Installed and aligned a lead shield frame near the beamline.
- 6. Developed and deployed software to readout, monitor and analyze the new detectors.
- 7. Determined the optimized fraction of MT target running to full target running

Optimizing fraction of MT target running

Could also normalize by matching helium bag end window

Andrew Schick

Jefferson Lab

CPP/NPP Run Report

GlueX Collaboration Meeting

September 20, 2022

University of Massachusetts Amherst

Optimizing fraction of MT target running

MT to Full running fraction comparable in neutral channel

Not 5%, and not 50%. Good qualitative argument

Jefferson Lab

Andrew Schick

University of Massachusetts Amherst

GlueX Collaboration Meeting

CPP/NPP Run Report

Production Sequence:

Full Target: 30 nA4545----135135----amorphous~ x8MT Target: 60 nA4545----135135----amorphous~ x2

+2 TAC runs and straight track running

Switching between full and empty target

Grab threaded studs to rotate clockwise 90° to put lead in beam, rotate ccw 90° to put blank frame in beam

University of Massachusetts Amherst

Andrew Schick

CPP/NPP Run Report GlueX Collaboration Meeting

Production Sequence:

Full Target: 30 nA4545---135135---amorphous~ x8MT Target: 60 nA4545---135135---amorphous~ x2

+2 TAC runs and straight track running

Run Range: 100385 - 101622

- 25 PAC days
- \sim 130 billion triggers
- 589 total "good" _____
 production runs

589 Total Full Runs 152 Total MT runs 246 PARA FULL 256 PERP FULL 87 AMO FULL 29 AMO MT

RCDB Query

event_count > 1000000

daq_run == 'PHYSICS_CPP'

beam_on_current > 10

solenoid_current > 100

collimator_diameter != 'Blocking'

Switching between full and empty target

Grab threaded studs to rotate clockwise 90° to put lead in beam, rotate ccw 90° to put blank frame in beam

University of Massachusetts Amherst

Andrew Schick

CPP/NPP Run Report GlueX Collaboration Meeting

Run Extension—Beam stability plot?

Basically, we were approved for 25 days of running. Of those....

THERE WILL BE TEXT OR A PLOT ON THIS SLIDE BY TOMORROW

Preliminary MWPC inefficiency study by Ilia

 $\sim 12~{\rm runs}.$ Selects tracks using all MWPC planes,

Jefferson Lab

matching tracks and FCAL hits.

Ilia's MWPC Inefficiency Study

12

The plane being checked is marked as "ineffficient" if there are no hits 5 sigma from the position extrapolated from other planes. The estimated sigma is about 2 cm in plane 1, increasing to about 5 cm in planes 5 and 6 due to multiple scattering

CPP/NPP Run Report

GlueX Collaboration Meeting

September 20, 2022

Andrew Schick

University of Massachusetts Amherst

CTOF Trigger

CTOF = Scintillators at back of wire chambers—read out at both ends. Test MWPC efficiency, and also to create a muon trigger that will be added to the front panel trigger supervisor

4 scintillators, 8 PMTs

University of Massachusetts Amherst

Andrew Schick

CPP/NPP Run Report GlueX Collaboration Meeting

Pulse Integrals with Threshold Cuts ADC and TDC

Nice minimum ionizing peaks

Counting Plots log(y) ADC and TDC

conjecture: good dimuon events

Continue to develop study Use as pure muon sample for training/testing neural net!

Preliminary AIEC CPP results

- Goal: Implement ML system to calibrate and control the GlueX Central Drift Chamber
- How: Recommends anode voltages and calibration values in response to changing environmental and experimental conditions.

Traditional CDC Operation

- HV maintained at constant 2125 V
- Gain Correction Factor fluctuates with atmospheric pressure, beam currents, etc
- Gain Correction Factor obtained from fit to dE/dx at p=1.5 GeV/c

Jefferson Lab

CPP/NPP Run Report GlueX Collaboration Meeting

Preliminary AIEC CPP results

Current Implementation

- HV determined from GCF predicted from a Gaussian Process
- Input features include gas temperature, atmospheric pressure, high voltage board current
- Model inference performed just before each run
- Preliminary analysis shows < 3% difference compared to traditionally obtained Gain Correction Factor

Jefferson Lab

Andrew Schick

University of Massachusetts

Amherst

September 20, 2022

17

CPP/NPP Run Report

GlueX Collaboration Meeting

Polarization

Polarization

CPP/NPP Run Report

GlueX Collaboration Meeting

September 20, 2022

Peak Polarization $\,\sim\,80\,\%$

University of Massachusetts Amherst

Jefferson Lab

Andrew Schick

Very Preliminary Look at Neutral Channel (Beni)

University of Massachusetts Amherst

Jefferson Lab

Andrew Schick

CPP/NPP Run Report GlueX Collaboration Meeting

Very Preliminary Look at Neutral Channel (Beni)

M(gamma gamma) = eta

Jefferson Lab

Andrew Schick

CPP/NPP Run Report GlueX Collaboration Meeting

Very Preliminary Look at Neutral Channel (Beni)

M(4gamma) = pi0 + pi0

Jefferson Lab

Andrew Schick

CPP/NPP Run Report GlueX Collaboration Meeting

Very Preliminary Look at Charged Channel

University of Massachusetts Amherst

Jefferson Lab Andrew Schick

CPP/NPP Run Report GlueX Collaboration Meeting

Very Preliminary Look at Charged Channel

 2π Invariant Mass, -t < 0.0030

Andrew Schick

CPP/NPP Run Report GlueX Collaboration Meeting

Full Percentage	82.0		80.0
Empty Percentage	18.0		20.0
Configuration	Triggers	Percentage of Total	Goal
Total	129,152,986,149	100.0	100.0
PARA 135 MT	11,029,617,055	8.5	9.4
PERP 45 MT	10,750,416,953	8.3	9.4
AMORPH MT	1,449,786,920	1.1	1.2
PARA 135 FULL	50,014,247,612	38.7	37.6
PERP 45 FULL	49,739,935,530	38.5	37.6
AMORPH FULL	6,168,982,079	4.8	4.8
Events/PAC day (est)	5,184,000,000	Assumed run efficiency	0.4
Empty Target	Triggers	Percentage of Empty	Goal
Total	23,229,820,928	100.0	
Para 45/135	11,029,617,055	47.5	47.0
Perp 45/135	10,750,416,953	46.3	47.0
Amorph	1,449,786,920	6.2	6.0
Empty (PAC Days)	4.48	203.7	2.2
Full Target	Triggers	Percentage of Full	Goal
Total	105,923,165,221	100.0	
Para 45/135	50,014,247,612	47.2	47.0
Perp 45/135	49,739,935,530	47.0	47.0
Amorph	6,168,982,079	5.8	6.0
Full (PAC Days)	20.43	102.2	20.0
Full+Empty (PAC Days)	24.91	112.2	22.2

Special thanks to Albert Fabrizi and Elton for maintaining the run spreadsheet!

Link to Albert's spreadsheet

	7/14/2022	101061	Amorph			30457848			Empty	30 nA Production
	7/14/2022	101062 45 PERP	JD70-103 50um 45/135 deg		240,722,239				Empty	60 nA Production
0.4	7/15/2022	101063 45 PERP	JD70-103 50um 45/135 deg		243,283,439				Empty	60 nA Production
0.1	7/15/2022	101064 135 PARA	JD70-103 50um 45/135 deg	240,821,917					Empty	60 nA Production
	7/15/2022	101065 135 PARA	JD70-103 50um 45/135 deg	241,493,378					Empty	60 nA Production
	7/15/2022	101066	Amorph			60753445			Empty	60 nA Production
Goal	7/15/2022	101067 135 PARA	JD70-103 50um 45/135 deg						Empty	wrong setting junk
	7/15/2022	101068 45 PERP	JD70-103 50um 45/135 deg		240,190,327				Empty	60 nA Production
	7/15/2022	101069 45 PERP	JD70-103 50um 45/135 deg		240,171,084				Empty	60 nA Production
47.0	7/15/2022	101070 135 PARA	JD70-103 50um 45/135 deg	240,509,952					Empty	60 nA Production
47.0	7/15/2022	101071 135 PARA	JD70-103 50um 45/135 deg	234,657,372					Empty	60 nA Production
47.0	7/15/2022	101072	Amorph			8835233			Empty	60 nA Production
47.0	7/15/2022	101073	Amorph			39033204			Empty	60 nA Production
6.0	7/15/2022	101074	Amorph						Empty	
	7/15/2022	101075	Amorph						Pb	DAQ Test
2.2	7/15/2022	101076 45 PERP	JD70-103 50um 45/135 deg					18,485,504	Pb	30 nA Production
	7/15/2022	101077 45 PERP	JD70-103 50um 45/135 deg					240,984,459	Pb	30 nA Production
	7/15/2022	101078 45 PERP	JD70-103 50um 45/135 deg					21,854,394	Pb	30 nA Production
	7/15/2022	101079 45 PERP	JD70-103 50um 45/135 deg					241,138,678	Pb	30 nA Production
	7/15/2022	101080 135 PARA	JD70-103 50um 45/135 deg				240,689,937		Pb	30 nA Production
Goal	7/15/2022	101081 135 PARA	JD70-103 50um 45/135 deg				241,025,752		Pb	30 nA Production
000										
47.0										
47.0	1									

University of Massachusetts Amherst

Jefferson Lab

Andrew Schick Glue

CPP/NPP Run Report GlueX Collaboration Meeting Se

Back up

University*oj* Massachusett Amherst

Activity	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D	J	F	Μ	Α	Commissioning
Accelerator operation																	
MWPCs					•												
Fabrication						_											
Transport to Jlab													•				
Staging and testing in ESB															I		
Installation on muon detector																	
Checks with beam																	
Muon detector mechanical																	
Order major pieces																	
Receive major pieces																	
Assemble muon detector																	
Target assembly procurements																	
Checks with beam																	
Trigger			_														
TOF Design requirements					_												
TOF Firmware coding and simulation						-											
TOF Verification (Test stand)								-				•					
TOF Field test													•				
Trigger integration																	
Tagger microscope move					_												
Purchase alignment hardware																	
Move to 6 GeV coherent peak position																	
Checks with beam																	
University of																	
Massachusetts Jeffers	on L	ab	Andı	rew Schi	ck	Glu <u>eX C</u>	7NPP Ru Colla <u>bora</u>	un Report ation <u>Mee</u>	ting	Sept	ember 2	20, 2022					26
Amherst																	

CPP software

Started holding weekly CPP software meetings to address needs prior to summer run

• Thursdays at 12:30 pm on zoom, listed on CPP meeting page

Achieved goals

- AI/Machine Learning
 - MWPC Neural Net for μ/π separation, TMVA Neural Net for e/π separation
- DFMWPCHit_Factory: for creating calibrated MWPC hits from non-calibrated MWPC hits
- DFMWPCMatchedTrack_Factory: for producing objects to be used with ML models e.g. E_{fcal}/p , # of MWPC wires hit, X,Y of projected track to face of MWPCs
- DFMWPCEpEm_Factory: for actually applying the μ/π , e/π inferences on their respective models
- Monitoring plugins for producing kinematic plots in real time
- Updated HDView2 for CPP

University of Massachusetts Amherst

New monitoring histograms for NPP experiment (example for sample of pure MC signal):

University of Massachusetts Amherst

Jefferson Lab Andrew Schick

CPP/NPP Run Report GlueX Collaboration Meeting

FMWPC Inspector in HDView2

Source: .././output_files_mumu/hddm/cpp_mumu_20220121_071729_000_geant4_smeared.hddm View Controls Inspectors Event Controls <u>Q</u>uit Open ZOOM Transverse Coordinates Run: 71728 Track Inspector -X X+ continuous ⊙ X/y <-- Prev Next --> - + Event: 501047 -Y Y+ delay: 0.25 👻 **FMWPC** Inspector O r/phi w/ this GTP bits: no bits Z Zi Reset button from downstream to BCAL colors Track Draw Options top view (looking down from above detector) DTrackCandidate: defaults DTrackWireBased: <default> 💌 1.00 GeV 316.2 MeV DTrackTimeDased: <dsfault> -DChargedTrack: <default> 🔻 31.6 Me\ 10.0 MeV DNeutralParticle 3.2 MeV DMCThrowr 1.0 MeV DMCTrajectoryPoint Depugger I lit Draw Options ⇒z —|90 cm E CDC BcalDisp FCAL side view from beam right (south CDC Drift Time FCAL colors CDCTruth FDC Wire FDC Pseudo 1.00 GeV FDCTruth ✓ TOF 31.6 Me¹ TOFTruth 10.0 MeV FCAL 3.2 MeV E BCAL 1.0 MeV CCAL FMWPC ⊢>z ⊣90 cm More options -Track Info -Throw Reconstructed FOM: DTrackTimeBased: trk theta Z: ťk: chisg/Ndof: Ndof: cand: 12 0.0002365 4.147 -2400 2 848 2.119 28.77 -0.74451.62 35 0.0116242 2.609 2.109 0.5345 1.012 1.62 35 0.0116042 ni 28.79 -0.7418 2119 5.85 1.335 3.504 1.012 - 3 2.843 -0.7621.632 35 0.0104948 -K4 2 1 1 9 28.8 1.673 1.012 2.839 35 0.05099 82.56 0.02927 2 1 1 8 28.85 -0.821 0.00752428 5.927 1.38 -158.8 4.861 0.7956 31 0.782551 1.00 -150.0 4.075 0.7974 01 0.700161 5.9145.917 1.38 -158.8 4.868 0.7962 31 0.781741 4.881 0.7978 1.38 -158.8 -31 0.779629 5.91 Full List

University of Massachusetts Amherst

Andrew Schick

CPP/NPP Run Report GlueX Collaboration Meeting

September 20, 2022

University of Massachusetts Amherst

Jefferson Lab Andrew Schick

CPP/NPP Run Report GlueX Collaboration Meeting

September 20, 2022

Tensorflow Model in the counting house

University of Massachusetts Amherst

Jefferson Lab

Andrew Schick

CPP/NPP Run Report GlueX Collaboration Meeting

September 20, 2022

Multivariate Analysis for μ/π

David Lawrence, Malachi Schram, Nikhil Kalra

Classification report

	cl precision	support		
0.0	0.98 0.99	0.99 0.98	0.99 0.99	1887 1997
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	3884 3884 3884

Confusion_Matrix

Jefferson Lab

Andrew Schick

CPP/NPP Run Report GlueX Collaboration Meeting

Time estimates for Run Plan

Activity	Duration (PAC Days)	Duration (hours)	Current	Target	Collimator	Radiator	Contact	Comment
Full target (Production)	20	960	27 nA	Pb (0.3 mm)	3.4 mm	JD70-103 or JD70-107		Alternate 0,0,90,90 deg diamond configuration (90%) with amorphous data (10%)
TOF, CDC HV Scans	0.2	10	27 nA	-	3.4 mm	AMO (1x10-4)	Beni, Naomi	Need time to assess data before updating settings. FCAL/BCAL trigger
Empty Target	1.5?	72	27 nA	-	3.4 mm	JD70-103 or JD70-107	Rory, Ilya, Andrew	Run at higher current?
Diamond Alignment	0.5?	24	20 nA	Pb (0.3 mm)	3.4 mm	JD70-103 and JD70-107	Hovanes	
Trigger Commissioning	1?	48	100 nA?	Pb (0.3 mm)	3.4 mm	JD70-103 or JD70-107	Sasha	
Lead Shield Alignment	0.2	10	30-100 nA	Pb (0.3 mm)	3.4 mm	JD70-103 or JD70-107	llya	
Beam Energy Calibration	0.1?	5	100 nA	Pb (0.3 mm)	3.4 mm	JD70-103 or JD70-107	Alexandre	Collimator Blocking for 5 min, periodically
Straight Track (Solenoid off)	0.5?	24	100 nA?	Pb (0.3 mm)	3.4 mm	JD70-103 or JD70-107	Simon, Lubomir	Ramping magnet takes about a shift.
PS magnet at GlueX nominal current	0.1?	5	27 nA?	Pb (0.3 mm)	3.4 mm	JD70-103 or JD70-107	Sasha?	
TAC Runs	1.5?	72	<2 nA	-	3.4 mm	AMO (2x10-5)	Sasha	
All Non-production total	5.6	269	-	-	-	-		-

University of Massachusetts Amherst

Andrew Schick

CPP/NPP Run Report GlueX Collaboration Meeting

September 20, 2022

Talk Overview

Hardware

- Muon detector: Forward Multi-Wire Proportional Chambers and CTOF
 - Description of FMWCP and CTOF for Shift Takers
- Tagger Microscope moved to cover 6 GeV coherent peak: <u>GlueX-doc-5420-v1</u>
- Target and modifications to target area to use solid Pb target
- Trigger
 - CPP will use a trigger based on the TOF (new)
 - NPP will use the FCAL/BCAL trigger with a high threshold
- CDC AI

Software

- FMWPC Library
 - DFMPWCHit_Factory, DFMPWCMatchedTrack_Factory, DCPPEpEm_Factory
 - Event viewer
- Monitoring Plots for CPP and NPP

Commissioning and Run plan

University of Massachusetts Amherst

Andrew Schick GlueX

CPP/NPP Run Report GlueX Collaboration Meeting

Draft Commissioning Steps

- 1. Setup photon beam operation at 50 nA.
- 2. Check microscope and hodoscope operation in new configuration
- 3. Align diamond to 6 GeV coherent edge
- 4. Check rates in microscope in new position
- 5. Check radiation and backgrounds rates in Hall D with Pb target
 - Check rates and beam stability at 30 nA
 - Check currents and hit distributions in the MWPCs
- 6. Complete a HV scan for the TOF and CDC. Adjust voltages accordingly, especially those of the TOF in advance of trigger studies.
- 7. Take data for adjustment of the FCAL PMT gains.
- 8. Optional: Check rates for two collimator configurations (5 and 3.4 mm)? Use profiler to stabilize the beam during test.
- 9. Compare empty vs full target rates
- 10. Adjustable Pb absorber (upstream of muon detector)

Proposal D (Ilya)

- 11. Commission trigger
 - Charged Trigger (TOF)
 - Neutral Trigger (FCAL/BCAL)
 - Calibration triggers (CTOF, random, PS)
 - Compare empty/full trigger rates
- 12. PS Magnet
 - Set nominal value for CPP = 2/3 * nominal GlueX. Take some data at the nominal GlueX setting for reference.
- 13. Beam energy calibration
 - May need to repeat periodically

