- 2019 CPP Test run—muons, pions, electrons
 - Status of muon FCAL shower determination?

$\gamma p \rightarrow \mu^+ \mu^-(p)$ Monte Carlo simulation

$\gamma p \rightarrow \mu^+ \mu^-(p)$ Monte Carlo simulation

Set number of blocks required for shower = 1 and the pileup at 0 goes away.

Need a solution for this before looking at CPP test run.

- 2019 CPP Test run—muons, pions, electrons
 - Status of muon FCAL shower determination?
- Neural Net for e/π separation
 - Albert's slides conclude: Differences in training variables between π + and π tracks negligible. Improved performance training on FCAL elasticity: $(E_{1fcal}+E_{2fcal})/E_{\gamma}$
 - Infrastructure for "two-track" neural net has been setup. Training to start immediately after this meeting.

$\gamma p \rightarrow \pi^+ \pi^- p$ 2018-01 GlueX data, e/π MVA training variables

FCAL Elasticity

- 2019 CPP Test run—muons, pions, electrons
 - Status of muon FCAL shower determination?
- Neural Net for e/π separation
 - Albert's slides conclude: Differences in training variables between π + and π tracks negligible. Improved performance training on FCAL elasticity: $(E_{1fcal}+E_{2fcal})/E_{\gamma}$
 - Infrastructure for "two-track" neural net has been setup. Training to start immediately after this meeting.
- $\gamma p \to \pi^+ \pi^-(p)$
 - Eleven 2018-01 Opol runs sent for analysis launch (~3% of total 2018 spring run data)
 - Analyze in the $m_{\pi\pi} < 0.5$ GeV, and low t region. Plot $t,\,\phi_{\pi^+},\,$ and $\psi_{\pi\pi}$
 - Compare with simulation: Primakoff, $f_0(500)$, ρ^0 —Tutorial for Elton's generator?

- 2019 CPP Test run—muons, pions, electrons
 - Status of muon FCAL shower determination?
- Neural Net for e/π separation
 - Albert's slides conclude: Differences in training variables between π + and π tracks negligible. Improved performance training on FCAL elasticity: $(E_{1fcal}+E_{2fcal})/E_{\gamma}$
 - Infrastructure for "two-track" neural net has been setup. Training to start immediately after this meeting.
- $\gamma p \to \pi^+ \pi^-(p)$
 - Eleven 2018-01 Opol runs sent for analysis launch (~3% of total 2018 spring run data)
 - Analyze in the $m_{\pi\pi} < 0.5$ GeV, and low t region. Plot $t,\,\phi_{\pi^+},\,$ and $\psi_{\pi\pi}$
 - Compare with simulation: Primakoff, $f_0(500)$, ρ^0 —Tutorial for Elton's generator?
- $\gamma p \rightarrow e^+ e^-(p)$ Polarization Study

$\gamma p \rightarrow e^+e^-(p)$ 2018-01 GlueX data, w/ fiducial+N.N. cuts

$$\frac{Y_{\perp}(\phi) - \frac{N_{\perp}}{N_{\parallel}} Y_{\parallel}(\phi)}{Y_{\perp} + \frac{N_{\perp}}{N_{\parallel}} Y_{\parallel}(\phi)} = \frac{\sum \cos 2\phi (P_{\perp} + P_{\parallel})}{2 + \sum \cos 2\phi (P_{\perp} - P_{\parallel})}$$

$$N_{\perp} = 311346$$
 $N_{\parallel} = 325538$ $N_{\parallel} = 0.9564$

Asymmetry
effect in data goes
away when given the
standard GlueX
treatment, combining
para and perp runs.

$$\gamma p \rightarrow e^+ e^-(p)$$
 reaction filter.

SIMULATION WITH ELECTRON BEAM OFFSET ON COLLIMATOR 1mm along 45 deg

2018-01 DATA 0 deg orientation runs

Offset from collimator is probably along 135 deg (or maybe 225?), not 45 deg. The ebeam collimator offset is likely larger than 1mm!

Same as above, zoomed

Phi of JT in bins of -t 0.01 < -t < 0.1

Same as above, zoomed

2018-01 Data, Neural Net + Fiducial Cuts 0 pol orientation runs

Very few events in this region of -t

Phi of JT Integral Right/Left

1 -----

Need ϕ vs heta