Alignment using $K_S \to \pi^+\pi^-$

K. Mizutani

May 28, 2021

Abstract

This note describes the tracking system alignment utilizing $K_S \to \pi^+\pi^-$ events. The alignment procedure is implemented in plugins/Alignment/MilleKs.

Contents

1	Introduction	3
2	Derivatives for Millepede	3
	$2.1 \frac{\partial q^{\pm}}{\partial v}, \frac{\partial q^{\pm}}{\partial p^{\pm}} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	4
	$2.2 \frac{\partial p^{\pm}}{\partial z} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5
Bil	bliography	6

1 Introduction

In the first stage of alignment [1], alignment parameters $p^{\rm global}$ are optimized by minimizing the following "single-track based" χ^2 :

$$\chi^{2}(\boldsymbol{p}^{\text{global}}, \{\boldsymbol{q}_{i}^{\text{local}}\}) = \sum_{i: \text{tracks } i: \text{bits in track } i} \left(\frac{\text{residual}_{j}(\boldsymbol{p}^{\text{global}}, \boldsymbol{q}_{i}^{\text{local}})}{\text{error}_{j}}\right)^{2}, \tag{1}$$

where q_i^{local} represents track parameters for i-th track. The minimization is performed by Millepede (see plugins MilleFieldOn, MilleFieldOff).

Here, we introduce the new parametrization for local parameters $q_i^{\rm local}$ (defined in Ref. [2]) to leverage the $K_S \to \pi^+\pi^-$ events for the alignment.

The original $q_i^{\rm local}$ consists of 5 components to represent a single track (10 components to represent π^+ and π^- tracks), while the new parametrization consists of K_S momentum at the decay vertex (3 components), the decay vertex position (3 components), and decay angles (θ,ϕ) in the K_S rest frame (8 components in total). We are saving 2 parameters which means the common vertex and K_S mass information are automatically utilized by using this new parametrization.

2 Derivatives for Millepede

To minimize the χ^2 (Eq. (1)), Millepede requires the following derivatives:

$$\frac{\partial \text{residual}_{j}(\boldsymbol{p}^{\text{global}}, \boldsymbol{q}_{i}^{\text{local}})}{\partial \boldsymbol{p}^{\text{global}}}, \quad \frac{\partial \text{residual}_{j}(\boldsymbol{p}^{\text{global}}, \boldsymbol{q}_{i}^{\text{local}})}{\partial \boldsymbol{q}_{i}^{\text{local}}}.$$
 (2)

We already have $\frac{\partial \mathrm{residual}_j(p^{\mathrm{global}},q_i^{\mathrm{local}})}{\partial p^{\mathrm{global}}}$ since this derivative does not change when we use the new parametrization. Therefore, what we should focus on is $\frac{\partial \mathrm{residual}_j(p^{\mathrm{global}},q_i^{\mathrm{local}})}{\partial q_i^{\mathrm{local}}}$.

From now on, we follow the notations used in Ref. [2]. In this reference, the new parameterization q_i^{local} is denoted by $(\boldsymbol{v}, \boldsymbol{z}) = (\boldsymbol{v}, p_x, p_y, p_z, \theta, \phi)$ where

- 1. $\boldsymbol{v} = (v_x, v_y, v_z)^T$ is the position of the decay vertex,
- 2. $\mathbf{p} = (p_x, p_y, p_z)^T$ is the momentum of the primary particle (K_S) at the decay vertex position in the lab-frame, and
- 3. θ and ϕ are the polar and azimuth angles defining the direction of the secondary particles $(\pi^+ \text{ and } \pi^-)$ in the K_S rest-frame, respectively.

Also, the derivative $\frac{\partial \mathrm{residual}_j(p^{\mathrm{global}},q^{\mathrm{local}}_i)}{\partial q^{\mathrm{local}}_i}$ for the new parametrization is denoted by $\frac{\partial f^\pm}{\partial (v,z)}$ where f^+ and f^- correspond to residuals which are associated with π^+ and π^- tracks, respectively.

The derivative $\frac{\partial f^{\pm}}{\partial (v,z)}$ is decomposed as follows [2]:

$$\frac{\partial f^{\pm}}{\partial (\boldsymbol{v}, \boldsymbol{z})} = \begin{pmatrix} \frac{\partial f^{\pm}}{\partial \boldsymbol{q}^{\pm}} \frac{\partial \boldsymbol{q}^{\pm}}{\partial \boldsymbol{v}} & \frac{\partial f^{\pm}}{\partial \boldsymbol{q}^{\pm}} \frac{\partial \boldsymbol{q}^{\pm}}{\partial \boldsymbol{p}^{\pm}} \frac{\partial \boldsymbol{p}^{\pm}}{\partial \boldsymbol{z}} \end{pmatrix}, \tag{3}$$

where q^{\pm} are the track parameters for the old parametrization (= state vectors for π^{\pm}), and p^{\pm} represent the π^{\pm} momenta at the decay vertex in the lab-frame. Here, we already have the

derivative $\frac{\partial f^{\pm}}{\partial q^{\pm}}$ since it is used in "single-track based" alignment (MilleFieldOn). Finally, what we have to newly prepare is a 5×3 matrix $\frac{\partial q^{\pm}}{\partial v}$, a 5×3 matrix $\frac{\partial q^{\pm}}{\partial p^{\pm}}$, and a 3×5 matrix $\frac{\partial p^{\pm}}{\partial z}$.

2.1 $\frac{\partial q^{\pm}}{\partial v}, \frac{\partial q^{\pm}}{\partial n^{\pm}}$

Here, we assume a constant magnetic field whose direction is along the z-axis in the lab-frame, and calculate the derivatives $\frac{\partial q^\pm}{\partial v}$ and $\frac{\partial q^\pm}{\partial p^\pm}$. Note that we are using the tracking state vector $\mathbf{q}^\pm = (x,y,t_x,t_y,q/p)^T$ where $t_x = \frac{dx}{dz}$ and $t_y = \frac{dy}{dz}$.

The derivative $\frac{\partial q^{\pm}}{\partial v}$ can be approximately calculated as follows:

$$\frac{\partial \boldsymbol{q}^{\pm}}{\partial \boldsymbol{v}} = \begin{pmatrix}
\frac{\partial x}{\partial v_x} & \frac{\partial x}{\partial v_y} & \frac{\partial x}{\partial v_z} \\
\frac{\partial y}{\partial v_x} & \frac{\partial y}{\partial v_y} & \frac{\partial y}{\partial v_z} \\
\frac{\partial t_x}{\partial v_x} & \frac{\partial t_x}{\partial v_y} & \frac{\partial t_x}{\partial v_z} \\
\frac{\partial t_y}{\partial v_x} & \frac{\partial t_y}{\partial v_y} & \frac{\partial t_y}{\partial v_z} \\
\frac{\partial t_y}{\partial v_x} & \frac{\partial t_y}{\partial v_y} & \frac{\partial t_y}{\partial v_z} \\
\frac{\partial (q/p)}{\partial v_x} & \frac{\partial (q/p)}{\partial v_y} & \frac{\partial (q/p)}{\partial v_z}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & -t_x \\
0 & 1 & -t_y \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.$$
(4)

To calculate

$$\frac{\partial \boldsymbol{q}^{\pm}}{\partial \boldsymbol{p}^{\pm}} = \begin{pmatrix}
\frac{\partial x}{\partial p_{x}^{\pm}} & \frac{\partial x}{\partial p_{y}^{\pm}} & \frac{\partial x}{\partial p_{z}^{\pm}} \\
\frac{\partial y}{\partial p_{x}^{\pm}} & \frac{\partial y}{\partial p_{y}^{\pm}} & \frac{\partial y}{\partial p_{z}^{\pm}} \\
\frac{\partial y}{\partial p_{x}^{\pm}} & \frac{\partial y}{\partial p_{y}^{\pm}} & \frac{\partial y}{\partial p_{z}^{\pm}} \\
\frac{\partial t_{x}}{\partial p_{x}^{\pm}} & \frac{\partial t_{x}}{\partial p_{y}^{\pm}} & \frac{\partial t_{x}}{\partial p_{z}^{\pm}} \\
\frac{\partial t_{y}}{\partial p_{x}^{\pm}} & \frac{\partial t_{y}}{\partial p_{y}^{\pm}} & \frac{\partial t_{y}}{\partial p_{z}^{\pm}} \\
\frac{\partial (q/p)}{\partial p_{x}^{\pm}} & \frac{\partial (q/p)}{\partial p_{y}^{\pm}} & \frac{\partial (q/p)}{\partial p_{z}^{\pm}}
\end{pmatrix},$$
(5)

we solve the equation of motion

$$\frac{d\boldsymbol{p}}{dt} = q\boldsymbol{v} \times \boldsymbol{B}.\tag{6}$$

Using the notations in Table 2 in Ref. [3], this equation can be written as follows:

$$\frac{d\mathbf{p}}{dz} = -\frac{\mathbf{p}}{p_z} \times \left(a\hat{\mathbf{h}}\right),\tag{7}$$

where $\hat{\boldsymbol{h}} = (0, 0, 1)^T$. This equation can be solved as follows:

$$\begin{pmatrix}
p_{0x} \\
p_{0y} \\
p_{0z}
\end{pmatrix} = \begin{pmatrix}
\cos\left(\frac{a(z_0-z)}{p_z}\right) & -\sin\left(\frac{a(z_0-z)}{p_z}\right) & 0 \\
\sin\left(\frac{a(z_0-z)}{p_z}\right) & \cos\left(\frac{a(z_0-z)}{p_z}\right) & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
p_x \\
p_y \\
p_z
\end{pmatrix}.$$
(8)

(See Table 2 in Ref. [3] for definitions of variables.)

Using Eq. (32) in Ref. [3]:

$$\boldsymbol{p} = \boldsymbol{p}_0 - (\boldsymbol{x} - \boldsymbol{x}_0) \times \left(a \hat{\boldsymbol{h}} \right), \tag{9}$$

we obtain

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} x + \frac{p_{0y} - p_y}{a} \\ y - \frac{p_{0x} - p_x}{a} \end{pmatrix} = \begin{pmatrix} x + \frac{\sin\left(\frac{a(z_0 - z)}{p_z}\right)p_x + \left(\cos\left(\frac{a(z_0 - z)}{p_z}\right) - 1\right)p_y}{a} \\ y - \frac{\left(\cos\left(\frac{a(z_0 - z)}{p_z}\right) - 1\right)p_x - \sin\left(\frac{a(z_0 - z)}{p_z}\right)p_y}{a} \end{pmatrix} .$$
 (10)

Also,

$$\begin{pmatrix} t_x \\ t_y \end{pmatrix} = \begin{pmatrix} \frac{p_{0x}}{p_{0z}} \\ \frac{p_{0y}}{p_{0z}} \end{pmatrix} = \begin{pmatrix} \cos\left(\frac{a(z_0 - z)}{p_z}\right) \frac{p_x}{p_z} - \sin\left(\frac{a(z_0 - z)}{p_z}\right) \frac{p_y}{p_z} \\ \sin\left(\frac{a(z_0 - z)}{p_z}\right) \frac{p_x}{p_z} + \cos\left(\frac{a(z_0 - z)}{p_z}\right) \frac{p_y}{p_z} \end{pmatrix}.$$
 (11)

Then, we can calculate necessary derivatives as follows:

$$\frac{\partial x}{\partial p_x^{\pm}} = \frac{S}{a}, \quad \frac{\partial x}{\partial p_y^{\pm}} = \frac{C - 1}{a} \tag{12}$$

$$\frac{\partial x}{\partial p_z^{\pm}} = -\frac{z_0 - z}{p_z^{\pm 2}} \left(p_x^{\pm} C - p_y^{\pm} S \right) \tag{13}$$

$$\frac{\partial y}{\partial p_x^{\pm}} = -\frac{C-1}{a}, \quad \frac{\partial y}{\partial p_y^{\pm}} = \frac{S}{a}$$
 (14)

$$\frac{\partial y}{\partial p_z^{\pm}} = -\frac{z_0 - z}{p_z^{\pm 2}} \left(p_x^{\pm} S + p_y^{\pm} C \right) \tag{15}$$

$$\frac{\partial t_x}{\partial p_x^{\pm}} = \frac{C}{p_z^{\pm}}, \quad \frac{\partial t_x}{\partial p_y^{\pm}} = -\frac{S}{p_z^{\pm}}$$
 (16)

$$\frac{\partial t_x}{\partial p_z^{\pm}} = \left(\frac{a(z_0 - z)p_y^{\pm}}{p_z^{\pm 3}} - \frac{p_x^{\pm}}{p_z^{\pm 2}}\right)C + \left(\frac{a(z_0 - z)p_x^{\pm}}{p_z^{\pm 3}} + \frac{p_y^{\pm}}{p_z^{\pm 2}}\right)S\tag{17}$$

$$\frac{\partial t_y}{\partial p_x^{\pm}} = \frac{S}{p_z^{\pm}}, \quad \frac{\partial t_y}{\partial p_y^{\pm}} = \frac{C}{p_z^{\pm}} \tag{18}$$

$$\frac{\partial t_y}{\partial p_z^{\pm}} = -\left(\frac{a(z_0 - z)p_x^{\pm}}{p_z^{\pm 3}} + \frac{p_y^{\pm}}{p_z^{\pm 2}}\right)C + \left(\frac{a(z_0 - z)p_y^{\pm}}{p_z^{\pm 3}} - \frac{p_x^{\pm}}{p_z^{\pm 2}}\right)S\tag{19}$$

$$\frac{\partial(q/p)}{\partial p_i^{\pm}} = -\frac{qp_i^{\pm}}{p^{\pm 3}} \quad (i = x, y, z)$$

$$\tag{20}$$

where

$$C = \cos\left(\frac{a(z_0 - z)}{p_z^{\pm}}\right), \quad S = \sin\left(\frac{a(z_0 - z)}{p_z^{\pm}}\right). \tag{21}$$

2.2 $\frac{\partial p^{\pm}}{\partial z}$

Here, we calculate the 3×5 matrix $\frac{\partial p^{\pm}}{\partial z}$. We follow the notations in Ref. [2].

First, p^{\pm} can be calculated as follows:

$$\boldsymbol{p}^{\pm}(p_x, p_y, p_z, \theta, \phi) = R\boldsymbol{p}_0^{\pm}, \tag{22}$$

where

$$R = \begin{pmatrix} \frac{p_x p_z}{p_T p} & -\frac{p_y}{p_T} & \frac{p_x}{p} \\ \frac{p_y p_z}{p_T p} & \frac{p_x}{p_T} & \frac{p_y}{p} \\ -\frac{p_T}{p} & 0 & \frac{p_z}{p} \end{pmatrix}, \quad \boldsymbol{p}_0^{\pm} = \begin{pmatrix} \pm m \sqrt{\alpha^2 - 1} \sin \theta \cos \phi \\ \pm m \sqrt{\alpha^2 - 1} \sin \theta \sin \phi \\ \frac{p}{2} \pm \frac{1}{2} \sqrt{\frac{\alpha^2 - 1}{\alpha^2} (p^2 + M^2)} \cos \theta \end{pmatrix}. \tag{23}$$

Using the following properties

$$\frac{\partial p_T}{\partial p_i} = \frac{p_i}{p_T}, \quad \frac{\partial p}{\partial p_i} = \frac{p_i}{p} \quad (i = x, y, z)$$
 (24)

derivatives of the matrix R and the vector \boldsymbol{p}_0^{\pm} are calculated as follows:

$$\frac{\partial R}{\partial p_x} = \begin{pmatrix}
\frac{p_z}{p_T p} - \frac{p_x^2 p_z (p^2 + p_T^2)}{p_T^3 p^3} & \frac{p_x p_y}{p_T^3} & \frac{p^2 - p_x^2}{p^3} \\
- \frac{p_x p_y p_z (p^2 + p_T^2)}{p_T^3 p^3} & \frac{p_y^2}{p_T^3} & -\frac{p_x p_y}{p^3} \\
- \frac{p_x p_y}{p_T p^3} & 0 & -\frac{p_x p_z}{p^3}
\end{pmatrix}$$

$$\frac{\partial R}{\partial p_y} = \begin{pmatrix}
-\frac{p_x p_y p_z (p^2 + p_T^2)}{p_T^3 p^3} & -\frac{p_x^2}{p_T^3} & -\frac{p_x p_y}{p^3} \\
\frac{p_z}{p_T p} - \frac{p_y^2 p_z (p^2 + p_T^2)}{p_T^3 p^3} & -\frac{p_x p_y}{p_T^3} & \frac{p^2 - p_y^2}{p^3} \\
-\frac{p_y p_z^2}{p_T p^3} & 0 & -\frac{p_y p_z}{p^3}
\end{pmatrix}$$
(25)

$$\frac{\partial R}{\partial p_y} = \begin{pmatrix}
-\frac{p_x p_y p_z (p^2 + p_T^2)}{p_T^3 p^3} & -\frac{p_x^2}{p_T^3} & -\frac{p_x p_y}{p^3} \\
\frac{p_z}{p_T p} - \frac{p_y^2 p_z (p^2 + p_T^2)}{p_T^3 p^3} & -\frac{p_x p_y}{p_T^3} & \frac{p^2 - p_y^2}{p^3} \\
-\frac{p_y p_z^2}{p_T p^3} & 0 & -\frac{p_y p_z}{p^3}
\end{pmatrix}$$
(26)

$$\frac{\partial R}{\partial p_z} = \begin{pmatrix} \frac{p_x p_T}{p^3} & 0 & -\frac{p_x p_z}{p^3} \\ \frac{p_y p_T}{p^3} & 0 & -\frac{p_y p_z}{p^3} \\ \frac{p_y p_T}{p^3} & 0 & -\frac{p_y p_z}{p^3} \\ \frac{p_T p_z}{p^3} & 0 & \frac{p_T^2}{p^3} \end{pmatrix}$$
(27)

$$\frac{\partial \boldsymbol{p}_0^{\pm}}{\partial p_i} = p_i \begin{pmatrix} 0\\0\\\frac{1}{2p} \pm \frac{\sqrt{\alpha^2 - 1}\cos\theta}{2\alpha\sqrt{p^2 + M^2}} \end{pmatrix} \quad (i = x, y, z)$$
(28)

Then, $\frac{\partial p^{\pm}}{\partial z}$ will be obtained using the chain rule.

References

- [1] Michael Staib and Alex Barnes, GlueX-doc-3739-v1 (Oct-2017).
- [2] E. Widl and R. Fruhwirth, CMS Note CMS NOTE-2007/032 (5-Oct-2007).
- [3] Paul Mattione, GlueX-doc-2112-v5 (16-Apr-2016).