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Abstract

This note describes the tracking system alignment utilizing Ks — 77~ events. The
alignment procedure is implemented in plugins/Alignment /MilleKs.
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1 Introduction

In the first stage of alignment [1], alignment parameters p&°"?! are optimized by minimizing
the following "single-track based" >
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where g represents track parameters for i-th track. The minimization is performed by
Millepede (see plugins MilleFieldOn,MilleFieldOff).

Here, we introduce the new parametrization for local parameters q°* (defined in Ref. [2]) to
leverage the K — 77~ events for the alignment.

The ongmal q.°® consists of 5 components to represent a single track (10 components to
represent 71 and 7~ tracks), while the new parametrization consists of K¢ momentum at the
decay vertex (3 components), the decay vertex position (3 components), and decay angles
(0, ¢) in the K rest frame (8 components in total). We are saving 2 parameters which means
the common vertex and Kg mass information are automatically utilized by using this new
parametrization.

2 Derivatives for Millepede

To minimize the y? (Eq. (1)), Millepede requires the following derivatives:
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new parametrization. Therefore, what we should focus on is = égfocal %)
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From now on, we follow the notations used in Ref. [2]. In this reference, the new parameteri-
zation g° is denoted by (v, z) = (v, ps, py, P-, 0, ¢) where

1. v = (vg, vy, v,)7 is the position of the decay vertex,

2. p = (Ps,Pys pz)T is the momentum of the primary particle (Kg) at the decay vertex
position in the lab-frame, and

3. 6 and ¢ are the polar and azimuth angles defining the direction of the secondary particles
(m* and 77) in the Kg rest-frame, respectively.
Oresidual; (pslobal) qiocal)
aq};ocal
f* and f~ correspond to residuals which are associated with 7 and 7~ tracks, respectively.
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Also, the derivative for the new parametrization is denoted by % where

The derivative a?f ) is decomposed as follows [2]:
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where g* are the track parameters for the old parametrization (= state vectors for 7*), and
pT represent the 7= momenta at the decay vertex in the lab-frame. Here, we already have the



derivative g—f£ since it is used in "single-track based" alignment (MilleFieldOn) Finally,

what we have to newly prepare is a 5 X 3 matrix 2, a5 x 3 matrix 2%, and a 3 x 5 matrix
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Here, we assume a constant magnetic field whose direction is along the z-axis in the lab-frame,
o + + . .
and calculate the derivatives aa% and 71~ aq . Note that we are using the tracking state vector
d
q* = (z,y,ts, 1y, q/p)" where t, dw andt = 2L

The derivative % can be approximately calculated as follows:
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we solve the equation of motion
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Using the notations in Table 2 in Ref. [3], this equation can be written as follows:
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where h = (0,0,1)7. This equation can be solved as follows:
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(See Table 2 in Ref. [3] for definitions of variables.)
Using Eq. (32) in Ref. [3]:
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Also,
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Then, we can calculate necessary derivatives as follows:
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Here, we calculate the 3 X 5 matrix ag;;. We follow the notations in Ref. [2].

First, p* can be calculated as follows:
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Using the following properties
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derivatives of the matrix R and the vector p; are calculated as follows:
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Then, % will be obtained using the chain rule.
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