
This	shows	two	things:	
	
1.  Running	reconstruc3on	

with	64	threads	on	a	KNL	
machine	is	about	5	3mes	
slower	than	running	72	
threads	on	a	2016	
Broadwell	
	

2.  Running	the	reconstruc3on	
in	a	Docker	container	on	
the	Broadwell	gives	the	
same	performance	as	
running	na3vely	

The	distribu3ons	below	were	obtained	by	doing	REST	produc3on	with	the	
standard	monitoring_hists	plugin.	This	is	what	is	done	during	a	GlueX	
Reconstruc3on	launch	on	the	farm.	The	data	is	the	“high	luminosity”	(=150nA	
=	2.5x107	γ/s)	data	run	31034	taken	in	Spring	2017.	



These	plots	show	the	event	processing	
rate	for	every	100	events.	The	x-axis	of	
each	plot	is	the	number	of	events	
divided	by	100.	(Each	plot	represents	
200k	events)	
	
The	top	plot	shows	that	the	steady	state	
of	the	KNL	machine	has	no	performance	
improvement	when	going	from	64	to	256	
threads*.	It	also	shows	that	the	scaling	
from	16	to	64	threads	is	not	very	good	
(44/17=2.6	compared	to	4)	
	
The	boYom	plot	shows	good	scaling	for	
the	Broadwell	machine	(211/111=1.9	
compared	to	2).	It	also	shows	a	benefit	
from	the	hyperthreading	region	
equivalent	to	about	13%	of	a	core	per	
hyperthread.		

*The	256	thread	case	(magenta)	appears	visually	to	have	a	
lower	average,	but	there	are	points	cut	off	on	the	top	of	the	
screen	that	pull	up	the	average.	(n.b.	the	zeros	are	also	
included	in	the	average).	



These	show	the	CPU	u3liza3on	vs	
number	of	events.	The	u3liza3on	is	
reported	as	a	frac3on	of	the	number	of	
cores	+	hyperthreads.	The	doYed	black	
lines	indicate	the	“ideal”	u3liza3on	if	
all	threads	are	con3nuously	busy.	
	
The	most	interes3ng	feature	is	that	
when	running	256	threads	on	the	KNL	
machine,	most	of	the	3me	only	one	
core	and	one	hyperthread	are	being	
u3lized.	Note	that	on	the	previous	
page,	this	extra	hyperthread	u3liza3on	
did	not	actually	seem	to	translate	to	
any	increase	in	performance.	
	
The	Broadwell	performs	as	expected.	
	
n.b.	the	slow	rise	to	full	rate	on	the	leC	side	of	the	plot	is	
due	to	calibraDon	constants	being	read	in	by	all	threads.	
They	contend	with	one	another	for	access	to	the	SQLite	file	
lock	so	it	takes	a	bit	to	get	going	at	full	rate.	



This	shows	the	RAM	usage	
vs.	events	processed	for	
both	KNL	and	Broadwell	
architectures.	One	would	
not	expect	the	RAM	usage	
to	differ	and	this	just	
confirms	it.	
	
The	RAM	usage	rises	as	
the	program	progresses	
due	to	the	use	of	various	
object	pools	maintained	by	
each	thread.	One	can	see	
from	this	that	RAM	usage	
for	this	type	of	
reconstruc3on	will	be	
roughly:	
			2GB	+	170MB/thread	



This	shows	a	comparison	between	
on	older	KNL	node	(qcd16p01)	with	
the	default	mode	(all	to	all	?)	and	
a	new	KNL	node	(qcd16p0001)	
running	with	the	quad-cache	mode.		
	
16	threads	were	used	in	both	cases.	
	
This	shows	no	significant	difference	
in	the	performance	between	the	
two	modes.	


