Status of η Rare Decay Background Simulation

Physics meeting, Jan 29 2012 A.Somov, JLab

Background Overview

Channel under study $\gamma p \rightarrow \eta p$ ($\eta \rightarrow \pi^0 \gamma \gamma$) - require 4 clusters in the forward calorimeter

 $\blacktriangleright \text{ Background from } \gamma \, p \to \eta \, p \, , \, \eta \to \pi^0 \, \pi^0 \, \pi^0 \, \pi^0$

- three orders of magnitude larger branching fration Br $(\eta \rightarrow \pi^0 \pi^0 \pi^0) = 32.57 \pm 0.23 \%$ Br $(\eta \rightarrow \pi^0 \gamma \gamma) = (2.7 \pm 0.5) \cdot 10^{-4}$

- missing photons, outside calorimeter acceptance

photon clusters overlapping

- $\triangleright \gamma p \rightarrow 2 \pi^0 p$ background
 - has to be measured (Crystal Ball studied $\pi \ p \rightarrow \pi^0 \pi^0 n$ production, Phys. Rev. C 69,045202 (2004)
 - use Pythia to estimate background

Electromagnetic background (pile up of EM events in ~60 ns time window)

Define background discriminating variables and form them into a likelihood function

$\eta \rightarrow \pi^0 \pi^0 \pi^0$ Background

Possible background discriminating variables:

- M (4 γ) invariant mass
- Radial energy spread $(E_{cluster} E_{max}) / E_{cluster}$ reduce events with overlapping clusters

Need detailed simulation of PWO calorimeter

- Use kinematic fit (missing mass) for events with reconstructed recoil proton

Simulation inputs:

Calorimeter geometry:

- beam hole size 12 x 12 cm²
- PWO size 120 x 120 cm²
- Lead Glas 212 x 212 cm²

Two cluster separation (Iliya Larin studies) $d_{min} = 2.5 \text{ cm} - PWO$ $d_{min} = 5.0 \text{ cm} - Lead Glass$

Lead Glass		
	PWO	

$\eta \rightarrow \pi^0 \pi^0 \pi^0$ Background

MC sample for 11 GeV beam photons

FCAL

*No energy position smearing on these plots

$\gamma p \rightarrow 2 \pi^0 p$ Background

Possible background discriminating variables:

- M (4γ) invariant mass
- two pion mass difference $\Sigma ||M|(\gamma \gamma) M(\pi^0)| / M(\pi^0)$

Recoil Proton Reconstruction: Kinematics

Proton Momentum and Polar Angle Reconstruction

Momentum residuals

Polar angle residuals

Momentum and Polar Angle Resolutions

Momentum

Polar Angle

Proton Reconstruction Efficiency

Eta missing mass