Rad Hard Lead Glass Update

Brad Schaefer

Goal

We want to determine the optimum amount of radiation hard glass (RHG) to insert into the FCAL

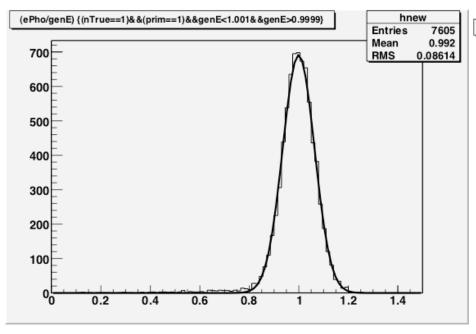
Previous Work

- Ratios of energy resolution of damaged to undamaged glass at various radii of the FCAL after one year of running.
- Each line represents a different radius.
- RHG curve is the first guess of the energy resolution of the radiation hard lead glass.
- Now that we have a RHG block we can determine the energy resolution better.

Pinning Down the Energy Resolution

- Previous estimate of energy resolution of RHG based on HDGEANT simulation of F101 lead glass not F108, which we plan on using.
- Used spectrophotometer to find the transmission for various wavelengths.
- Since GEANT4 tracks optical photons, we can insert the data from the spectrophotometer into a simulation to determine the energy resolution of the RHG.
- The detector setup included the lead glass, aluminum foil, cookie, light guide, PMT window and PMT Cathode.
- The quantum efficiency of the PMT was included in the simulation.
- The indices of refraction for various wavelengths were inserted.
 - Assuming F108 radiation hard has equivalent indices as its non-hard counterpart F8 (the regular lead glass).
- A 7 block by 7 block array using 1 GeV photons was used to determine the energy resolution

Comparison to HDGEANT(GEANT3)


- Original simulations done with HDGEANT so we need to determine the differences between HDGEANT and GEANT4
- GEANT4 tracks individual optical photons so we can include many of the properties of the lead glass and PMT
- GEANT3 uses the attenuation length of the block and attenuates the deposited energy down the length of the block (includes 3% smearing to account for photostatistics, tuned by data from RADPHI).

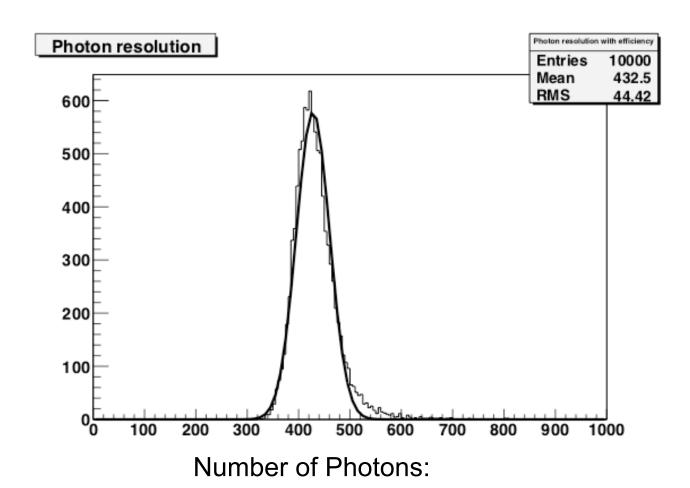
F8 (regular lead glass) Energy Resolution results for 1 GeV photons incident on array

Photon resolution

HDGEANT (GEANT3)

GEANT4

Entries 10000 Mean 653.5 52.27 RMS 450 400 Will use 350 Crystal Ball fit 300 in future 250 200 150 100 50 400 500 600 700


Mean energy: 0.9991 +/- 0.0007

Mean number of Photons: 652.0 +/- 0.5

$$\sigma_{E}/E = 6.444 + - 0.006 \%$$

$$\sigma_{N}/N = 6.71 +/- 0.06 \%$$

F108 Results

428.0 +/- 0.4

 $\sigma_N/N = 7.59 + /- 0.06 \%$

Conclusion

- GEANT4 predicts an energy resolution for RHG (F108) as **7.59 +/- 0.06 %.** F8, the regular lead glass, has a predicted energy resolution of **6.71 +/- 0.06 %.** These energy resolutions are for 1 GeV photons incident on the array.
- Tune HDGEANT with the correct attenuation length and rerun previous simulations
- More accurate energy resolutions could come from a beam test.