- model of Hall D
- Smeared beam energy uniformly in 100 MeV bin to account for discrete+finite electron tag acceptance
- Used same reconstruction software as applied to data further refinements are needed (fiducial regions, shower quality, TOF veto)
- Non-uniform effect of $\theta_{\gamma\gamma}$ cut across energies and masses may indicate a t cut to be more effective

$a \rightarrow \gamma \gamma Acceptance$

Passed signal simulation of Primakoff $a \rightarrow \gamma \gamma$ production from ¹²C at fixed beam energies and axion masses through Geant

Cutting on t treats beam energies more uniformly

Resolutions do not strongly depend on mass or beam energy

