η -meson radiative decay width measurement

Igal Jaeglé

Thomas Jefferson National Accelerator Facility

for the SRC Collaboration

December 19, 2022

Table of contents

Introduction

- 2 PrimEx-eta experiment
- $\bigcirc \gamma + {}^{4}\text{He} \rightarrow \eta + {}^{4}\text{He}$
- 5 Selection criteria
- 6 First look at the data

Conclusion

Introduction

The SRC data set can be used to:

- Measure FCAL angular resolution by observing the Primakoff photoproduction of π^0
- Check if this measurement is possible with a Carbon target

But, the SRC data set cannot be used for a precise measurement

Measurement of the η radiative decay width

Via the Primakoff proceess

Primakoff photoproduction of an η -meson off a nucleus

PrimEx-eta experiment

Goal, 3.2% uncertainty: 1% statistical error and 3% systematic error

ijaegle@jlab.org (JLab)

 $\eta \rightarrow \gamma \gamma$ width measurement

Precision determination of the quark mass double ratio Q

 $\eta \to 3\pi$ decay used as input into Q calculation eg

- Primakoff (Browman et al) vs. collider average (Tanabashi et al)
- Kaon mass difference with theoretical estimatation for the electromagnetic corrections (Kastner et al and Giusti et al)

Test Standard Model

$\gamma + {}^4\mathrm{He} \to \eta + {}^4\mathrm{He}$

Theoretical differential cross-section known:

•
$$\frac{d\sigma_T}{d\Omega} = \frac{d\sigma_P}{d\Omega} + \frac{d\sigma_{NC}}{d\Omega} + 2\sqrt{\frac{d\sigma_P}{d\Omega}\frac{d\sigma_{NC}}{d\Omega}\cos(\phi) + \frac{d\sigma_{NI}}{d\Omega}}$$

• Primakoff contribution is directly proportional to the $\Gamma_{\eta \to \gamma \gamma}$ decay width

$$\frac{d\sigma_{P}}{d\Omega} = \Gamma_{\eta \to \gamma\gamma} \frac{8\alpha Z^{2}}{m_{\eta}^{2}} \frac{\beta^{3} E^{4}}{Q^{4}} |F_{e.m.}(Q)|^{2} \sin^{2}\left(\theta_{\eta}^{\text{lab}}\right)$$

- Expected cross-section for different accelerator electron beam energies (E^{beam}) but same:
 - ▶ Photon-beam energy (E_{γ}^{beam}) range relative to $E_{e^-}^{beam}$, 87.5% × $E_{e^-}^{beam} \leq E_{\gamma}^{beam} \leq 97.5\% \times E_{e^-}^{beam}$ ▶ $\Gamma_{\eta \rightarrow \gamma \gamma} = 510 \text{ eV}$ and $\phi = 57.5^{\circ}$

- Primakoff contribution increases with $E_{\gamma}^{beam} \nearrow$
- \bullet Overlap between Primakoff and background (Coherent & Interference) decreases with E_{\sim}^{beam} \nearrow
- But overlap will increase for heavier nuclei

$\gamma + {}^{12}\mathrm{C} \to \eta + {}^{12}\mathrm{C}$

As to be determined but compared to ⁴He

- Primakoff yield/peak should increases by a factor (6/2)²
- Coherent & Incoherent yield/peak should increases by a factor (12/4)

Since ratio between Primakoff peak and Coherent peak is 4 for 4 He, one can expect the a ratio of 1 between Primakoff and Coherent peak for 12 C

At this stage, systematic error on the integrated luminosity is known while systematic error on the Primakoff η yield has not been studied

$\eta(/\pi^0) \rightarrow \gamma \gamma$, selection criteria

Two clusters in Forward Calorimeter:

- Barrel Calorimeter used to veto hadronic backgrounds
- Time-Of-Flight wall used to veto charged particles
- Elasticity required

Clear signal but includes Primakoff and (in)coherent events, and non-negligible backgrounds (mainly beamline and hadronic)

First look at the data

28638/28672 of the SRC Carbon data set have been analysed, fit not optimized

First look at the data

28638/28672 of the SRC Carbon data set have been analysed, fit not optimized

Below 0.2°, $N_\eta \sim 3450$

Cross-checked of the η yield

Can be done with the $\eta \to \pi^0 \pi^0 \pi^0$

- 6 Forward Calorimeters clusters)
- BCAL veto
- Elasticity required

Conclusion

This data set looks promising