

Electroproduction of $f_0(980)$ and $f_2(1270)$ off the proton with the CLAS detector

Brice Garillon, Ph.D.

- 1. Introduction and physics motivations
- 2.Experimental setup
- 3. Cross sections for $f_0(980)$ and $f_2(1270)$ electroproduction
- 4. Moments Analysis of 2-pion electroproduction
- 5. Conclusions

1.Introduction and physics motivations

2. Experimental setup

3. Cross section for $f_0(980)$ and $f_2(1270)$

4. Moments Analysis of 2-pion electroproduction

5. Conclusions

Visible matter at subatomic scale

- Strong interaction: Interaction between quarks and gluons.
- In the Standard Model, the strong interaction is described by Quantum Chromodynamics (QCD).
 - \rightarrow Each quark or gluon carry a colour charge (r,g,b).
 - → **Hadron**: bound state of quarks and gluons, colour singlet.
- To this day, QCD cannot be solved analytically for bound states.
- Quark model (Gell-Mann, Zweig 1963-64)
 - →One half spin = **Baryon** = **qqq**
 - \rightarrow Integer spin = **Meson** = **qq**

The f_0 (980) and f_2 (1270)

	f _o (980)	f ₂ (1270)	
$J^{ m PC}$	o++ (scalar)	2 ⁺⁺ (tensor)	
Isospin	О	0	
Mass (MeV)	990±20	1275±1.2	
FWHM (MeV)	40-100	185.1±3	
Main decay channel	π+π-	π+π-	

• f_0 (980)

Scalars: 5 observed I=0 states vs. 2 predicted (2 nonets) in the quark model.

 \rightarrow Some states are different from $q\bar{q}$.

 $\Phi \rightarrow \gamma f_o \rightarrow \gamma \pi^o \pi^o$: Important strangeness content.

 f_{0} (980): candidate for an **exotic state**¹:

- Tetraquark² (qqqq)

- KK Molecule³

• $f_2(1270)$

- → Compatible with quark model predictions.
- → Dynamically generated by vector meson-vector meson interactions ⁴?

- Studies from πN scattering, e⁺e⁻ and pp collisions, photoproduction γp^5 .
- ¹A.Donnachie, Yu.S.Kalashnikova, arXiv:0806.3698v1
- ⁴ E.Oset et al , Eur. Phys. Journal A, 44, 2, p.305-311

² R.L. Jaffe, Phys. Rev. D 15, 267 (1977)

⁵ M. Battaglieri *et al*, Phys.Rev. D80 (2009) 072005

³ T.Barnes, Phys. Lett. B 165, 434 (1985)

Meson electroproduction

- The electron interacts with the nucleon via an exchange of a virtual photon γ*
 → Perturbative QED
 (α_{EM}=1/137<<1)
- $Q^2=-(e'-e)^2$ Virtuality $\rightarrow Q^2=0$: Photoproduction \rightarrow Compton Wavelength: $\lambda \propto 1/\sqrt{Q^2}$ Spatial resolution on the probed nucleon

Cross sections for exclusive $\gamma^*p \rightarrow pf_0/f_2$ have never been measured!

• Q^2 and t-dependences might give hints on the nature of f_0 and f_2 .

y*N → N'M mechanisms

Low Q² **Particle exchange**

• t channel exchange dominant for the f_0 and f_2 production.

• Amplitude :

A~gVPg'V'

P: Propagator.

V,V': Vertices

g,g': Coupling constants

 $(Q^2, v \rightarrow \infty \text{ et } x_B \text{ constants}), t << Q^2$ Longitudinally polarized photon.

- Factorisation theorem:
 - →"Hard" scattering
 - → Distribution Amplitude (DA)
 - → 4 Generalized Parton Distributions (GPDs) H,E, \widetilde{H} et $\widetilde{E}(x, \xi, t)$

Correlation between the transverse position of a quark and its longitudinal momentum fraction.

• The f_0 and f_2 are analysed in their main decay channel:

$$f_0 \rightarrow \pi^+\pi^-$$
 (dominant) and $f_2 \rightarrow \pi^+\pi^-$ (85%)

• The exclusive final state e'p' $\pi^+\pi^-$ comes from several processes :

$$ep \rightarrow e' \ N^* \ \pi^{+/-}$$

$$p'\pi^{-/+}$$

$$ep \to e'p'\pi^+\pi^-$$

• The f_o and f_o are analysed in their main decay channel:

$$f_0 \rightarrow \pi^+\pi^-$$
 (dominant) and $f_2 \rightarrow \pi^+\pi^-$ (85%)

• The exclusive final state e'p' $\pi^+\pi^-$ comes from several processes :

$$ep \rightarrow e'p' M$$
 $\downarrow \pi^+\pi^-$

$$ep \rightarrow e' N^* \pi^{+/-}$$

$$p'\pi^{-/+}$$

$$ep \to e'p'\pi^+\pi^-$$

The unpolarized cross section is described by 7 independent kinematic variables:

Q² Virtuality of the virtual photon (γ*).
 v=(E-E')

• The f_o and f_o are analysed in their main decay channel:

$$f_0 \rightarrow \pi^+\pi^-$$
 (dominant) and $f_2 \rightarrow \pi^+\pi^-$ (85%)

• The exclusive final state e'p' $\pi^+\pi^-$ comes from several processes :

$$ep \rightarrow e'p' M$$
 $\downarrow \pi^+\pi^-$

$$ep \rightarrow e'p'\pi^+\pi^-$$

The unpolarized cross section is described by 7 independent kinematic variables:

 Q^2 Virtuality of the virtual photon (γ^*) . v=(E-E')

 $x_B = Q^2/2M_p v$ Bjorken variable (~1/W, energy of (γ^* ,p) center of mass frame)

- t Momentum transfer to the nucleon
- Φ Azimuthal angle between the leptonic plane (γ^* ,e') and the hadronic plane (γ^* ,p').

• The f_o and f_o are analysed in their main decay channel:

$$f_0 \rightarrow \pi^+\pi^-$$
 (dominant) and $f_2 \rightarrow \pi^+\pi^-$ (85%)

• The exclusive final state e'p' $\pi^+\pi^-$ comes from several processes :

$$ep \rightarrow e'p' M$$

$$\downarrow \quad \pi^+\pi^-$$

$$ep \rightarrow e' \ N^* \ \pi^{+/-}$$

$$p'\pi^{-/+}$$

$$ep \rightarrow e'p'\pi^+\pi^-$$

The unpolarized cross section is described by 7 independent kinematic variables:

 Q^2 Virtuality of the virtual photon (γ^*) . v=(E-E')

 $\mathbf{x}_{\mathrm{B}} = \mathbf{Q^2/2M_p v}$ Bjorken variable (~ 1/**W**, energy of (γ^* ,p) center of mass frame)

- t Momentum transfer to the nucleon
- Φ Azimuthal angle between the leptonic plane (γ^* ,e') and the hadronic plane (γ^* ,p').

 $Cos(\theta_{\pi^+})$, Φ_{π^+} π^+ angles in the helicity rest frame of the meson.

 $\mathbf{M}_{\pi^+\pi^-}$ $\pi^+\pi^-$ invariant mass

1.Introduction and physics motivations

2. Experimental setup

3. Cross section for $f_0(980)$ and $f_2(1270)$

4. Moments Analysis of 2-pion electroproduction

5. Conclusions

The experimental setup

Jefferson Laboratory

- CEBAF (2012): $E_{max} = 6 \text{ GeV}$, $I_{max} = 200 \mu\text{A}$
- Distributed to 3 experimental Halls A, B and C (2012).

CLAS (Hall B, 1997-2012)

- Large acceptance spectrometer (" 4π ").
- Split by the toroidal magnet (B_{max}=2.5T) into 6 azimuthal sectors. Each sector included:
 - \rightarrow 3 regions of Drift Chambers(DC) : Charged particles momenta. ($\Delta p/p < 0.5\%$ for 1 GeV/c)
 - → **Cherenkov Counters(CC)** : π/e^- separation up to 2.5 GeV/c. (8°< θ <45°)
 - →**Electromagnetic Calorimeters (EC)**: electron and neutral particle identification.
 - \rightarrow **Scintillator Counters (SC)**: Particle identification by time-of-flight measurement (8°< 0 <140°, Δt = 80 to 160 ps).

DC: Drift Chamber CC: Cerenkoy Counter

CEBAF Large

Acceptance Spectrometer

SC: Scintillation Counter EC: Electromagnetic Calorimeter

e1-6 (2001)

- \rightarrow Electron beam : E_{mean} = 5.754 GeV, I_{mean} = 7 nA
- → Target : LH₂ (length=5 cm, diameter=1.5 cm)

1.Introduction and physics motivations

2. Experimental setup

3. Cross section for $f_0(980)$ and $f_2(1270)$

4. Moments Analysis of 2-pion electroproduction

5. Conclusions

Selection of exclusive e'p' $\pi^+\pi^-$

e identification

- $\rightarrow p_{e-}>0.8 \text{ GeV/c}$
- →Z-Vertex selection within the target volume (DC)
- → Ficudial cuts (EC et CC).
- → Energy sample fraction (EC)
- → Track matching between DC,CC and SC.

\mathbf{p} and $\mathbf{\pi}^+$ identification

- $\rightarrow p_{q>0} > 0.2 \text{ GeV/c}$
- → Fiducial cuts (DC)
- →Time-of-flight (SC) : Measured velocity

easured velocity
$$\Delta \beta_{m} = \beta_{mes}^{*} - \beta_{calc}(m) = \frac{l}{ct} - \frac{p}{\sqrt{p^{2} + m^{2}}}$$
SC

Predicted velocity for a particle with given mass m.

Exclusivity

 \rightarrow Selection on π -**peak** in missing mass spectrum **Mm[ep** π +**X**]

$$-0.05 \le Mm^2 [ep \pi^+ X] \le 0.08 \text{ GeV}^2$$

- → Z-Vertex selection within the target volume
- \rightarrow Cherenkov noise removed for p_{e-}<1.5 GeV/c

Differential cross sections $\sigma^{\gamma^*p \to p\pi^+\pi^-}$

Reduced cross section

$$\frac{d^{2} \sigma^{\gamma^{*} p \to p \pi^{+} \pi^{-}}}{d \eta dM_{\pi^{+} \pi^{-}}} = \frac{1}{\Gamma_{V}(Q^{2}, x_{B})} \frac{d^{4} \sigma^{ep \to p \pi^{+} \pi^{-}}}{dQ^{2} dx_{B} d \eta dM_{\pi^{+} \pi^{-}}}$$

 $\Gamma_{_{V}}$ Virtual photon flux factor η : A kinematic variable among (-t, Φ , cos $\theta_{_{HS}}$), or none.

 \rightarrow Selection of exclusive e'p' $\pi^+\pi^-$ events in experimental data

- $Acc_{Corr\ Rad}$ ($Q^2,x_B,t,\Phi,cos\ \theta_{HS}$, ϕ_{HS} , $M_{\pi\pi}$) CLAS acceptance, corrected from radiative effects. Computed with **Monte Carlo simulations**.
- $Eff_{CC}(p_e, Q^2, x_B)$ Loss of good events after electron-ID cut.
- $L_{int} = 30 \text{ fb}^{-1}$ Integrated luminosity. Integrated beam charge measured with Faraday cup.
- $\Delta V = \Delta Q^2 \Delta x_B \Delta \eta \Delta M_{\pi\pi}$ Bin volume.
- $\mathbf{F}_{corrVol}(\mathbf{Q}^2, \mathbf{x}_B, \mathbf{\eta})$ Bin volume fraction occupied by $ep\pi^+\pi^-$ phase space events
- $\mathbf{F}_{\mathbf{h}}(Q^2, \mathbf{x}_B, \mathbf{\eta}, \mathbf{M})$ Correction to the acceptance, in a $(Q^2, \mathbf{x}_B, \mathbf{\eta}, \mathbf{M}_{\pi\pi})$ bin.

11/24/15 Brice Garillon 1:

Monte Carlo simulations

→ Acceptance correction

Genev

 $ep\pi^+\pi^-$ Monte Carlo event generator

Generated epπ⁺π⁻

GSIM

CLAS simulation package

ADC/TDC

GPP (GSIM Post-Processing)

Smearing and inefficiencies to reproduce real data

♦ ADC/TDC

Recsis

Reconstruction (ADC/TDC → Physical variables)

 $ep\pi^+\pi^-$ accepted by CLAS

Event selection

Same algorithm as in the real data (except for the CC related cuts)

Generated MC

- Total (240 M)

Non resonant epπ⁺π⁻(45%)

- ep → epρ^o (25%)

 $- ep \rightarrow ep\Delta^{++}\pi^{-}(30\%)$

Monte Carlo simulations

→ Acceptance correction

Genev

epπ⁺π⁻ Monte Carlo event generator

Generated epπ⁺π⁻

GSIM

CLAS simulation package

ADC/TDC

GPP (GSIM Post-Processing)

Smearing and inefficiencies to reproduce real data

♦ ADC/TDC

Recsis

Reconstruction (ADC/TDC → Physical variables)

 $ep\pi^+\pi^-$ accepted by CLAS

Event selection

Same algorithm as in the real data (except for the CC related cuts)

- Data
- Reconstructed MC(Normalised to data)
- Non resonant $ep\pi^+\pi^-$
- $-\;ep\to ep\rho^o$
- $\; ep \to ep \Delta^{++} \pi^{-}$

Binning of the phase space

 $W>1.8\,\mathrm{GeV}$, $p_e>0.8\,\mathrm{GeV/c}$

Variable	Unit	Intervals	Nb. bins	Bin width
Q^2	GeV ²	1.50-2.80 2.80-5.10	4 3	0.33 0.76
X_{B}	-	0.15-0.55	6	0.06
-t	GeV ²	0.1-1.90 1.90-4.30	6 3	0.30 0.80
Φ	О	0-360	7	51.4
$\cos \theta^{_{HS}}_{_{\pi^{+}}}$	-	-1. à 1.	7	0.28
$\Phi^{ ext{HS}}_{}}$	О	0-360	7	51.4
$\mathbf{M}_{\pi^+\pi^-}$	GeV	0.26-2.00	45	0.04

Experimental data

Radiative corrections

• The e⁻ radiates photons easily.

- "Hard" photons
 "soft" photons: Low energy emissions and/or reabsorbed immediately (still in data after exclusivity cut).
- Mo and Tsai. (fig. b) to e)) radiative effects embedded in GENEV, calculated for ep → ep process.
- Born cross section: $\sigma_{Born} = F_{Rad} * \sigma_{Born+diagrams b) \text{ to e}}$
 - → Radiative correction factor:

$$F_{rad} = \frac{Gen_{\text{non rad}}}{Gen_{\text{rad soft}}}$$
 (~ 5 to 20%)

Acceptance corrected from radiative effects

• Acc = Geometrical acceptance*CLAS detection efficiency

$$Acc = \frac{Rec_{Rad soft}}{Gen_{Rad soft}}$$
ND. OF MC by CLAS in Nb. of MC

Nb. of MC events reconstructed

by CLAS in a bin.
Nb. of MC events generated in a bin.

- →Computed with MC simulations.
- Acceptance and radiative corrections computed in a single effective term Acc_{Corr Rad}

$$\sigma_{\text{Born}}^{\gamma p \pi + \pi -} = \frac{N_{\text{Rad soft}}^{\gamma p \pi + \pi -} \cdot F_{\text{RAD}}}{L_{\text{int}} \cdot \text{Eff}_{\text{cuts}} \cdot Acc}$$

$$Acc_{\text{Corr Rad}} = \frac{Rec_{\text{Rad soft}}}{Gen_{\text{non rad}}}$$

 $\mathbf{Rec}_{\mathbf{Rad\ soft}} \ \mathrm{ep}\pi^{\scriptscriptstyle{+}}\pi^{\scriptscriptstyle{-}}\gamma_{\mathrm{soft}} \ \mathrm{reconstructed} \ \mathrm{by\ CLAS}$ and selected in a bin.

Gen_{non rad} $ep\pi^+\pi^-$ generated without radiative effects in a bin.

• $Acc_{Corr Rad}$ computed for each 7D bin $(Q^2, X_R, -t, \Phi, \cos \theta_{HS}, \phi_{HS}, M_{\pi+\pi})$

Integrated acceptance

(mean: 2.5%)

Cross section $\sigma^{\gamma^*p \to p\pi + \pi}$ in (Q^2, W)

Good agreement with previous CLAS ρ° analysis.¹

¹ S.A. Morrow *et al*, Eur. Phys. J. A 39, 5-31 (2009)

Extraction of f₀ and f₂ signals

- f_o and f_2 extracted from a **fit** on **reduced cross section spectrum as a function of M**_{$\pi+\pi$}, in a given (Q², x_B, η) bin. $\eta = t$, φ , $\cos \theta_{HS}$ (or nothing).
- Fit model= incoherent sum of the following contributions :

→ 3 resonances :

Skewed Breit Wigner (BW) for ρ , \mathbf{f}_0 , \mathbf{f}_0

- → 4 parametres :
 - -Intensity
 - -Centre
 - -FWHM
 - -Skewness toward lower mass region.
- ightarrow **2 backgrounds : non resonant** $\pi^+\pi^-$ and Δ^{++} . Spectra generated with GENEV (no radiative effects). ightarrow 2 scale parameters (total spectrum fraction): $\alpha_{\pi\pi}$ (from 0.01 to 1) et α_{Δ} (<0.2)

Cross section for meson production

$$\sigma^{\gamma^* p \to p \text{ Meson}} = \frac{\int_0^2 BW^{\text{Meson}}_{skew}(M_{\pi^+\pi^-}) dM_{\pi^+\pi^-}}{BR^{\text{Meson} \to \pi^+\pi^-}} \int_{f_0: 100 \%}^{Branching ratio:} f_0: 100 \%$$

Systematic errors

$$\frac{\Delta \sigma}{\sigma} = \sqrt{\left(\frac{\Delta \sigma_{\text{stat fit}}}{\sigma}\right)^2 + \left(\frac{\Delta \sigma_{\text{syst norm}}}{\sigma}\right)^2 + \left(\frac{\Delta \sigma_{\text{syst fit}}}{\sigma}\right)^2}$$

	O	٧ (O	/ \	O	/ (U /	
Acceptance and radiative corrections						15 %		
Monte Carlo model						5 %		
Holes in DC						6 %	$\sum \frac{\Delta \sigma_{syst norm}}{\Omega} = 17 \%$	
CC-cut losses efficiency						1.5 %		
Luminosity						3 %)	
Fitting procedure					Bin l	by bin		

$$\Delta \sigma_{\text{syst fit}} = \sqrt{\frac{1}{4} \sum_{i=1}^{4} (\sigma - \sigma_i)^2}$$
1) Free Δ^{++} scale parameter.
2) Non resonant background only
3) f and f without skewness

4 systematic variations on fitting procedure :

- 3) f_o and f_o without skewness
- 4)+/- 15 % variation on centre and FWHM of f_2 and ρ^o .

Fitting procedure is the main source of systematic error:

For various (Q², x_B) bins, ρ^o : 17 to 22 % f_o : 28 to 150 % f_o : 44 to 85 %

→ Cross section points with $\Delta \sigma / \sigma_{\text{stat}} > 90 \%$ rejected.

Cross sections in (Q^2, X_B)

- \rightarrow Good agreement on $\sigma^{\gamma p \rightarrow p \rho}$ with previous CLAS ρ^{o} analysis.¹
- \rightarrow f₀ and f₂ seems to follow a different Q²-scaling from the DVMP one.

f_o differential cross sections in (Q²,x_B,t)

f₂ differential cross sections in (Q²,x_B,t)

Impact parameter b

f_0 differential cross sections in (Q^2, x_B, Φ)

 σ_T et σ_L could be extracted by the Rosenbluth technique (measurements at different beam energies, same (Q^2, x_R)).

TT and TL interferences of $\gamma^* p \rightarrow pf_o$

$$0.28 < x_{_{\rm B}} < 0.35$$

- Non negligible contribution from TT response function.
- TT contribution similar to $\gamma^* p \to p \pi^{o \ 1}$ electroproduction.

f_2 differential cross sections in (Q^2, x_B, Φ)

 $\sigma_{_{\rm T}}$ et $\sigma_{_{\rm L}}$ could be extracted by the Rosenbluth technique.

TT and TL interferences for $\gamma^* p \rightarrow pf$

- Hint of TL response function.
- TL contributions in f₂ mass region in agreement with Legendre moments analysis at HERMES¹.

- 1.Introduction and physics motivations
- 2. Experimental setup
- 3. Cross section for $f_0(980)$ and $f_2(1270)$

4. Moments Analysis of 2-pion electroproduction

5. Conclusions

Partial Wave Amplitudes

 \rightarrow f₀ (J=0) and f₂ (J=2) extracted using their spin.

• ep \rightarrow ep $\pi\pi$ amplitude decomposed into a **coherent sum of partial wave amplitudes**.

$$\left|A\left(Q^{2},x_{B},-t,\Phi,\cos\theta,\phi,M_{\pi^{+}\pi^{-}}\right)\right|^{2} = \left|\sum_{l=0}^{\infty}\sum_{m=-l}^{m=+l}a_{lm}\left(Q^{2},x_{B},-t,\Phi,M_{\pi^{+}\pi^{-}}\right)\cdot Y_{lm}\left(\cos\theta,\phi\right)\right|^{2}$$

$$1: \text{Relative angular orbital momentum}$$

$$m: \text{Angular momentum projection along}$$

$$Z_{\text{HS}} \text{ axis in helicity frame.}$$
Production amplitude

Spherical Harmonics Decay amplitude

 \rightarrow First attempt of PWA on ep \rightarrow ep $\pi\pi$ with mass independent fits.

(in collaboration with M. Battaglieri, A. Celentano, D.Glazier, V. Mathieu, A. Szczepaniak):

Pseudo-data: Consistent results in simple cases, fails with realistic $\rho \rightarrow$ **Parity conservation? Real data**: Not enough statistics to perform fit in (Q^2, x_R, t, Φ, M) bins.

Moments of angular distributions

→ **Amplitudes indirectly determined** by analysing **moments** of the decay angular distributions

Fit of the intensity (AmpTools)²

Minimisation of
$$-\ln L = -(\sum_{i=1}^{n} \ln(I(\tau_{i}, \vec{x}))) + \frac{1}{N^{GEN}} \sum_{k=1}^{NREC} I(\tau_{i})$$

Experimental data

 $t_{i} = (\theta, \Phi)$
 $\vec{x} = < Y_{LM} > (Acceptance correction term)$

Acceptance corrected angular distribution given by the intensity

¹ M. Battaglieri *et al*, Phys.Rev. D80 (2009) 072005

²http://sourceforge.net/projects/amptools/

Fit of the moments to the data

- Mass independent fit.
- Several **fit scenarios (8) tried**, 1 with parametres set to **o** and randomly initialised parameters for the others. Kept fit with the **best-ln L**.
- Fit quality checked by comparing π^+ angular distributions from the **data** with those predicted by the intensity reconstructed by CLAS.
- Good agreement between the fit and the data.

Moments of angular distributions: results

 \rightarrow ρ^{o} and $f_{_{2}}$ resonances clearly visible. Possible hint of $f_{_{0}}$ with a small width (Γ ~ 40 MeV).

- 1.Introduction and physics motivations
- 2. Experimental setup
- 3. Cross section for $f_0(980)$ and $f_2(1270)$
- 4. Moments Analysis of 2-pion electroproduction
- 5.PMT calibration for the Central Neutron Detector (CLAS12)

6.Conclusions

Conclusions

- First cross section measurements of excluvie $f_0(980)$ et $f_2(1270)$ electroproduction off the proton.
 - $\rightarrow\,$ -t, Φ and $\cos\theta_{\mbox{\tiny HS}}\mbox{-dependence}$ studied.
- $f_0(980)$ and $f_2(1270)$ in a region strongly contaminated by the background.
 - →Large systematic errors.
 - Limited by our knowledge of the background.
 - Analysis note is ongoing.
- First attempt of a partial waves analysis on ep \rightarrow ep $\pi^+\pi^-$. (Work in progress)
 - → Underconstrained fit : partial waves decomposition to be worked out (parity conservation?)
 - → Statistics is currently limited, forbiding a fully differential extraction of partial waves amplitudes.
 - → How to deal with radiative corrections?
- Alternative analysis by determining moments of decay angular distributions.
 - \rightarrow f₂ resonance visible. f₀ to be confirmed with larger statistics
 - Analysis limited by the statistics
 - (With higher luminosity, analysis with large Q^2 , x_R intervals and fine t, Φ , M bins might be possible)
- Central Neutron Detector (CLAS12): gain calibration of the PMTs

Future prospects

Polarized photon beam

→ Filter on the naturality of exchanged particle.

- GlueX detector:
 - → High intensity polarized photon beam
 - → Uniform acceptance (azimuthal especiallly)
 - → Commissioning under completion
- Light meson spectroscopy → f₀(980)

$$\gamma p \rightarrow p \pi^+ \pi^-$$

- \rightarrow 6 GeV done (first measurement of f_0)
- → Complete the analysis at 12 GeV (achievable with GlueX I?)

$$\gamma p \to p K^{\scriptscriptstyle +} K^{\scriptscriptstyle -}$$

- \rightarrow f₀ at treshold
- → K identification improved by addition of DIRC in Hall D(2018)

f₀(1500) glueball?

- Search for exotic excitations
- Early physics expected in 2016:
 - → Beam asymmetries
 - → Cross sections measurements of known mesons (possibly in PWA)

Thanks for your attention.

Backup slides

Generalized Distribution Amplitude (GDA)

- GDA described **production of hadrons** in a **partonic picture**.
- GDA → Different form factor according to the object's nature (qq, tetraquark...)
- **Cross sections** depends on the object's **nature** described by the GDA.

Electron identification

Among negative charged tracks (q<0):

- p>0.8 GeV/c
- Vertex selection within the LH2 target.
- EC and CC fiducial cuts.
- Energy sampling fraction :
 - Total energy deposited/p.
 - Deposited energy fraction in Inner and Outer part of the EC.

"CC Matching"

- Photoelectron emission spectra from CC show a large number of track (pic 1-Phe) which are misidentified as e⁻.
- Geometrical cuts on the tracks between CC and SC.
- Cuts on the time-of-flight between CC and SC.
- Significant reduction of e^{-}/π^{-} contamination

Photoelectron emission spectrum from the 2 photomultipliers in module #7 sector 3

Proton and π^+ identification

Among e-X selected events:

- q < 0 and p > 0.2 GeV/c
- Fiducial cuts in θ and φ .
- Vertex selection within the target volume.
- Proton and π^+ identified by time-of-flight measurements :

Predicted velocity for a particle with given mass m

$$\Delta \beta_m = \beta_{mes} - \beta_{calc}(m) =$$
Measured velocity

Target-SC distance $= \frac{l}{ct} - \frac{p}{\sqrt{p^2 + m^2}}$ Momentum (DC)
Time of flight (SC)

 \rightarrow 2.5 σ cuts on $\Delta\beta_p$ and $\Delta\beta_{\pi+}$

Exclusive ep \rightarrow e'p' $\pi^+\pi^-$

Among $e^-p\pi^+X$ selected events :

• Selection on the missing mass $Mm[e^-p\pi^+X]$:

$$p_{X} = p_{p} + p_{e} - (p_{e'} + p_{p'} + p_{\pi^{+}})$$

Cuts around the π -peak:

$$-0.05 \le Mm^2 [ep \pi^+ X] \le 0.08 \text{ GeV}^2$$

- 1-Phe peak (CC) remains after the missing mass cut for $p_{\mbox{\tiny e-}}{<}1.5~\mbox{GeV/c}.$

 \rightarrow (p_e-,Nphe)=[0.8;1.5]x[0,300] region excluded

• Cuts on Z vertex difference between the proton and electron, the pion and the electron.

Dalitz plots

Kinematic resolutions

Acceptance correction

• Acc_{Corr Rad} computed for each $(Q^2, x_B, t, \Phi, \cos \theta_{HS}, \Phi_{HS}, M_{TT})$ 7D bin and applied as an event-by-event weight.

• 7D bins with large relative error **rejected**:

$$\frac{\Delta Acc}{Acc}$$
 < 80 %

Generated Monte Carlo without radiative effects

Monte Carlo events accepted by CLAS (w/ rad. Effects), corrected by the 7D acceptance

- 7D acceptance correction on reconstructed MCis not able to retrieve all generated events
 - \rightarrow Hole factor correction $\mathbf{F}_{\mathbf{h}}$

$$F_h(Q^2, x_B, v, M_{\pi^+\pi^-}) = \frac{h_{\text{Gen non rad}}(Q^2, x_B, v, M_{\pi^+\pi^-})}{h_{\text{Corr Acc 7D}}(Q^2, x_B, v, M_{\pi^+\pi^-})}$$

• (Q², x_B, v) bins with a strong hole factor correction are rejected:

$$\bar{F}_h(Q^2, x_B, \nu) > 30\%$$

CC_{Eff}

CC selection cuts are applied only to the data

→ Need to estimate the good electrons rejected by these cuts

Bin volume correction

- Most (Q^2,x_B) and (Q^2,x_B,t) cells are not fully filled by the phase space.
- Each cell is **subdivided into 100x100 subcells.**
- Bin volume fraction:

Total number of subcells

Number of subcells satisfying the cuts:

$$E_{faisceau} = 5.75 \,\text{GeV},$$

 $W > 1.8 \,\text{GeV},$
 $p_e > 0.8 \,\text{GeV/c}, 10 \,^{\circ} < \theta_e < 90 \,^{\circ},$
 $0.1 < \frac{v}{E_{faisceau}} < 0.95$

$M_{\pi^+\pi^-}$ cross sections in (Q², X_B)

$M_{p\pi^+}$ cross sections in (Q^2, x_B)

$M_{p\pi}$ cross sections in (Q^2, x_B)

Legendre Moment (HERMES)

Partial Waves Analysis

Fit of the intensity (AmpTools)²

Acceptance corrected angular distribution predicted by the intensity

¹ M. Battaglieri et al, Phys.Rev. D80 (2009) 072005

²http://sourceforge.net/projects/amptools/

Phase Space MC Generator

- 3 requirements:
 - Whole phase space covered
 - Uniform decay angular distribution for pion in 2 pion rest frame.
 - Particles generated according to phase space only.

(Genbod routine).

PWA on pseudo-data

• 85K pseudo-data events extracted from accepted phase space MC with the following intensity:

- Good agreement between the fit and the data.
- Fit returns the right contributions of S and P Wave.
- PWA fit procedure in CLAS allows to separate S and P Wave in a simple case.

Baryon suppression

Before cuts

After cuts

- The π⁺ from ep → eπN* → epππ projects onto an infinite set of spherical harmonics.
- → Kinematical cut to remove baryonic resonances
- In a first approximation, proton and π from baryon are collinear ($\cos(\theta_{\text{proton-}\pi})=1$), while $\pi\pi$ from meson are collinear.
 - $cos(\theta[proton-\pi+])>0.2$ $cos(\theta[proton-\pi-])>0.2$
- Slight reduction of Δ^o and Δ^{++} in the kinematical range considered

PWA: results

- Good agreement between 1D angular distribution from the fit and from the data
- Unsatisfying results:

Not able to establish f_9 resonance in D-Wave.

Peak does appear in ρ (f_o) region in the P (S) wave, but does not have the proper resonance characteristics (mass, FWHM).

• Use of parity conserved amplitude basis may help?

The Central Neutron Detector (CLAS12)

CND

PMT calibration

• Gain measured from photoelectron emission spectrum:

• 144 PMTs calibrated.

