EXTRACTION OF SAMPLING FLUCTUATIONS IN BCAL READOUT CELLS

Simulation: Irina Semenova Analysis: Andrei Semenov (U. of Regina)

August 19, 2011

VERY PRELIMINARY: NOT FOR REFERENCES

Method

- * GEANT: Simulation of energy depositions in the cells of homogeneous BCAL
- * Extra-smearing of deposited energies (to address sampling fluctuations) with Poisson distribution
- * Fit the resulting spectra to the distributions of energy deposited in fibers (detail BCAL model in FLUKA 2011.2.3)

- * 90-deg photon emission in the center of column #2
- * Fine segmentation
- * Sampling fluctuations are represented via statistical term only
- * Statistical Term and Sampling Fraction are free parameters in the fit
- * Sampling Fraction is reasonable for FLUKA simulation with "core-only" fibers in BCAL model

These spectra are for E0=1000 MeV

These spectra are for E0 = 500 MeV

- * Statistical coefficient in sampling fluctuations is NOT constant on cell-bycell basis but increases with shower development (factor 2.4 in 6 inner layers at E0=1 GeV)
- * Lower photon energy => Faster shower development => Faster rise of statistical coefficient in sampling fluctuations

Cut on energy deposited in cell (1,2): E0 = 1000 MeV

 $\Delta E(1,2) < 0.1 \text{ MeV}$

 $\Delta E(1,2) > 2 \text{ MeV}$

Column=2: E_y = 1000 MeV Statistical Term 0.0 0.0 8 8 **ALL Showers** $\Delta E_{12} > 2 \text{ MeV}$ $\Delta E_{12} < 0.1 \text{ MeV}$ 0.06 0.04 0.02 **Layer Number**

- * Statistical coefficient in sampling fluctuations in the first layers depends on primary photon conversion point
- * Statistical coefficient in sampling fluctuations in cell (2,2) is strongly correlated with one in the cell (1,2)

Preliminary Conclusions:

- * Statistical coefficient in sampling fluctuations is NOT constant on cell-bycell basis but increases with shower development (factor 2.4 in 6 inner layers at E0=1 GeV)
- * Energy dependence: Lower photon energy => Faster shower development => Faster rise of statistical coefficient in sampling fluctuations
- * Shower evolution dependence: Statistical coefficient in sampling fluctuations in the first layers depends on primary photon conversion point
- * Statistical coefficient in sampling fluctuations in cell (2,2) is strongly correlated with one in the cell (1,2)
- * Sampling fraction for column #2 looks almost stable
- * This study was done for "direct-photon-hit" column of inner cells; the study with "side" columns of cell require bigger simulated samples; there are very preliminary indications that sampling fraction might be not constant in "side" cells