Charged Particle Reconstruction Status Feb. 22, 2008 David Lawrence

The following plots were made from a Monte Carlo simulation of ~35 million single π^+ events

For these events, the drift times of the CDC and FDC hits were smeared via Gaussian distributions with widths corresponding to $150\mu m$ and $200\mu m$ respectively.

Cathode strips were not used in the fits.

Track candidates were taken from thrown values (*i.e. track finding was not used*)

Momentum Resolution

Feb. 22, 2008 DL $\sigma_{\!\Delta p_{tran}}'\!p_{tran}$ vs. p_{tot} vs. θ Feb. 22, 2008 DL $\boldsymbol{\sigma}_{\!\!\Delta \textbf{p/p}} \, \textbf{vs.} \, \textbf{p}_{\!\! \text{tot}} \, \textbf{vs.} \, \boldsymbol{\theta}$ Candidates from THROWN values Single n⁺ with MULS and LOSS on Single n⁺ with MULS and LOSS on Total Momentum (GeV/c) Total Momentum (GeV/c) n θ Angle (degrees) θ Angle (degrees)

Total Momentum Resolution

Transverse Momentum Resolution

Transverse Momentum Resolution

Total Momentum Resolution Compared to original *HDFast*

Geant

MCFast

Tracking Residuals

When FDC was fit with **no** smearing, the residuals were about $90\mu m$ which is consistent with $220^2 = 200^2 + 90^2$

Drift times were smeared by an equivalent of 150µm in the CDC and 200µm in the FDC.

Multiple scattering seems to contribute about 90µm to the FDC position, but a negligible amount to the CDC

Parametric Calculation of 90° tracks vs. *hdgeant*

Tracks perpendicular to CDC wires seem to have an effective residual, even with no explicit smearing of the drift time

CDC Thresholds on Total Momentum vs. $\boldsymbol{\theta}$

From tracks with at least 5 wires hit in CDC and 10 wires hit total between CDC anf FDC.

Limit at 150µm is artificial due to histogram lower limit

What's next ...

- Work on documenting "pure" tracking resolutions
- Make new resolution functions available (svn co src/programs/Simulation/HDParSim)
- Look at resolutions in the presence of background and inefficient/dead wires
- Full tracking efficiencies

Background Rates

