

Efficiency Studies Using ω Decays

12/1/16

Omega Channels

- Top down approach
- Use channel(s) as source of "tagged" photons, study relative efficiencies of MC vs. data
- Two decay channels investigated:

$$\circ \omega \rightarrow \pi^+\pi^-\pi^0$$
, $\pi^0 \rightarrow \gamma(\gamma)$

- Better purity
- Most work done here so far

$$\circ \omega \rightarrow (\gamma)\pi^0$$

- Better coverage at higher E, θ
- Potential for study of BCAL efficiency?

Event Selection

- Standard things:
 - PID timing
 - $\Delta t_{rf} < \frac{1}{2}$ bunch period
 - Z-vertex, DOCA cut on tracks
- Kinematic fitting constraints:
 - \circ Vertex ($\pi^+\pi^-\pi^0$ only)
 - $\circ \pi^0$ mass
 - \circ (γ) mass

$$\omega \to \pi^+\pi^-\pi^0$$
, $\pi^0 \to \gamma(\gamma)$

- Higher Statistics, more background now
- Efficiency comparisons to MC coming soon (qualitatively looks same as before)

$\omega \to (\gamma)\pi^0$

- First look: probably could get much better purity
- New error matrices look to be helping a lot!