BCAL Calibration with Pions and Protons

Irina Semenova and Andrei Semenov (University of Regina)

Gluex Calorimetry Meeting, September 3, 2009

Idea

Simulate energy deposited in the fibers of BCAL readout segments as a function of charged particle type, momentum, azimuthal and polar angles (available from CDC) => Relative and (potentially) absolute calibration of BCAL readout segments

Questions

1. Do we have a reasonable kinematics available?
2. How many events we need to reach a required stat. accuracy?
3. How big are the systematic uncertainties?
4. Though a negative-charge data should be pretty clean $\left(\pi^{-}\right)$, how precise we need to separate π^{+}and protons?

Geometry

GEANT 3.21 + GFLUKA

Realistic map of Magnetic field
$\pi^{+} ; P=1.0 \mathrm{GeV} / \mathrm{c} ; \theta=20^{\circ}$

Side View

Good kinematics: Energy enough to illuminate whole module + almost central hit

Energy Deposited in the Fibers by Pions

Signals (Npe) from Left and Right Ends of the Module

Deposited energy is "attenuated" to the module ends and convoluted with Poisson statistics

Protons: $P=1.0 \mathrm{GeV} / \mathrm{c} ; \quad \theta=20^{\circ}$

Front View

Side View

Energy Deposited in the Fibers by Protons

GEANT3.21+GFLUKA; protons; $1 \mathrm{GeV} / \mathrm{c} ; \Theta=20 \mathrm{deg}$.
 away from the value with pions

Calibration of inner segments of BCAL is less sensitive to pion/proton ratio

Signals (Npe) from Left and Right Ends of the Module

GEANT3.21+GFLUKA; protons; $1 \mathrm{GeV} / \mathrm{c} ; \Theta=20$ deg.

$\pi^{+} ; P=0.6 \mathrm{GeV} / \mathrm{c} ; \quad \theta=40^{\circ}$

Side View

Protons: $P=0.6 \mathrm{GeV} / \mathrm{c} ; \quad \theta=40^{\circ}$

Side View

