Recent Developments on
JCalibration

Calibration Constants
Design criteria:

e B-coders agnostic to storage mechanism
Don’t care if they are retrieved from a database,
file, web object, ...

e B-coders agnostic to calibration context

Implicitly want “what everybody else is using”
(e.g. same run number, same source, same “tag”, ...)

B-coder is person writing reconstruction code

JCalibration

e A complete calibration is represented by a
single JCalibration object that is shared by all
threads

e One job may have multiple JCalibration
objects (e.g. multiple runs in the job)

e Calibration source is specified by a URL
(environment variable JANA CALIB_URL)

e Factories don’t specify calibration context
(e.g. run number), it is already known by
JEventLoop

JCalibration API

While we don’t actually have a calibrations/conditions database yet, we
do have a well-defined API for accessing it.

Constants can be stored in either arrays (1D) or tables (2D) and can be
indexed either by name (key-value) or by position.

Templated methods of JEventLoop:

f

// Get 1-D array of values indexed by name
bool GetCalib(string namepath, map<string, T> &vals)

arrays
A

// Get 1-D array of values indexed by row
bool GetCalib(string namepath, vector<T> &vals)

// Get 2-D table of values indexed by row and name
bool GetCalib(string namepath, vector< map<string, T> > &vals)

tables
A

// Get 2-D table of values indexed by row and column
bool GetCalib(string namepath, vector< vector<T> > &vals)

Example of Accessing Calibration
Constants as key-value pairs

... In factory class definition ...

double slope, offset, exponent;

... in brun() method ...
map<string, double> twpars;
loop->GetCalib("FDC/driftvelocity/timewalk_parameters", twpars);

slope = twpars["slope"];

" ne . Template method converts
offset = twpars [of fset :l) values to doubles using
exponent = twpars["exponent"]; stringstream class

For a few parameters like this, it
makes sense to copy them into local
data members of the factory class

Example of Accessing Calibration
Constants as an array

... in factory class definition ...
vector<double> tof_tdc_offsets;

... in brun() method ...

loop->GetCalib(”TOF/tdc_offsets", tof_tdc_offsets);
1f(tof_tdc_offsets.size()!=Ntof) throw JException(“Bad Ntof!”);

... in evnt() method ...
double t = tof->tdc - tof_tdc_offsets[tof->1d];

Backend Database

The API defines the routines B-coders will use to obtain calibration
constants independent of the details of how the actual database is
implemented
This does impose some requirements of the database design itself:
— Store both 1-D arrays and 2-D tables
— Index either by name or position

— Uniquely identify constants by
* Run number
* Context string (may include timestamp)
* URL

JCalibrationFile implements a trivial calibration backend that maps
directly to ASCII files on the local file system

— Represents snapshot of constants and so ignores run number and
context string

— URL points to root directory (e.g. file:///group/halld/calib)

— Constants currently kept in svn
(https://halldsvn.jlab.org/repos/trunk/calib)

New Features

Implemented in JANA 0.4.9

Calibration object generators and namepath Discovery

o Generator mechanism for JCalibration

* JCalibrationGenerator class added 06 alianm

swire-al86icalib>jcalibread -L

° 1 Created JCalibration object of type: JCalibrationFile
Allows mUItIpIe types of C_iatabase Generated via: fallback creation of JCalibrationFile
backends to be supported in same Runs: requested=100 found=100 Yalidity range=1-10000
. URL: file:///Users/davidl/HallD/calib
blnary context: default
* Allows new calibration database Available namepaths:
backends to be added dynamlca”y to /Users/davidl/HallD/cal ib/CDC/drift_velocity
: . : /Users/davidl/HallD/cal ib/FDC/fdc_parms
pre-compiled binaries /sers/davidl/Hal 10/cal ib/FIC/ lorentz_def lections
. i fUsers/davidl/Hal1D/calib/FDC/ 1orentz_def lectionsMarch2007
USGfUl fOI’ prlvate development Of /Users/davidl/HallD/cal ib/Magnets/Solenoid/solenoid_1400
backend a|ong5ide trunk without /Users/davidl/Hal1D/cal ib/Magnets/Solenoid/solenoid_1500
.] . /Users/davidl/HallD/cal ib/Magnets/Solenoid/solenoid_1500_20081112-1
disturbing standard builds AUsers/davidl/Hal1D/calib/Magnets/Solenoid/solenoid_1500_20081126-3

/Users/davidl /Hal1D/cal ib/Magnets/Solenoid/solenoid_1500_20081203-1
/Users/davidl HallD/cal ib/Magnets/Solenoid/solenoid_1500kinked
/Users/davidl/HallD/cal ib/Magnets/Solenoid/solenoid_1500spoiledA

o Discove ry mechanism /Users/davidl/Hal1D/cal ib/Magnets/Solenoid/solenoid_1600_20081112-2
: . : /Users/davidl Hal1D/cal ib/Magnets/Solenoid/solenoid_1700_20081112-3
* JCalibration now has a new virtual /Users/davidl /Hal 1D/cal ib/Magnets/Solenoid/solenoid_1800_20081112-4

i /Users/davidl Hal1D/cal ib/Magnets/Solenoid/solenoid_1800_20081126-3
method called GetListOfNamepaths() | 1 o e Teal ibrttamet ey Salonid/eslonodd1900-20081209-1
that can be used to probe a

Users/davidl/Hal1D/cal ib/Magnets/Solenoid/solenoid_const
) . . Users/davidl/HallD/cal ib/Magnets/Tagger/taggerBfield-quad
calibration backend for the available
constants

wire-al86:calib>f]

Users/davidl/HallD/cal ib/TOF /tof _parms
*This is utilized in the jcalibread
utility using the “-L” switch

Calibration Web Service

Service
Broker
7 |UDDI _ _ . :
_ f e Calibration constants will need to be accessible
from remote computers via the internet
WSDL, WSDL, * Direct access to a database is problematic due

Service
Requester

to cybersecurity concerns

3 kl
| SOAP: » ré};g

* Web services work over HTTP and so will likely
Service . .
Provider be the appropriate mechanism for remote access

 The JCalibrationWS class has been written to provide calibration constants through
a web service

Implemented as a plugin so --jcalibws must be added to command line to access (for now)

Allows read-only access to Hall-D calibration constants from anywhere in the world over HTTP
(http://www.jlab.org/Hall-D/Software/test/calib)

Uses gSOAP, a C++ SOAP implementation

Currently works like a proxy for JCalibrationFile on server side, but could trivially be made to use
another type of backend

Saving a (semi-)complete set of calibration
constants to the local disk

All JANA programs now have a new command line option:

--dumpcalibrations

Records which namepaths are
requested during a job and
writes the constants into ASCI|
files compatible with
JCalibrationFile

Avoids copying and running
entire database or even
copying a “complete” set of
calibration constants (which
could include obsolete ones or
ones not applicable to the
current run/code version)

806

Calibrations obtained from:

Context: default
Requested run: 1
Run found: 1

Run range: 1-10000

namepath

Telling all threads to quit ...

N xterm

Dumping calibrations for this job in ",/calibl/"

URL: file:///Users/davidl/HallD/calib

data type

FIC/lorentz_deflections
Magnets/Solenoid/solenoid_1500
Material/radlen

TOF/tof _parms

for tcsh:

for bash:

ire-a186:tmp>f

StbBvectorISt3maplSsfStdlessISsESalStdpairIKSsFEEESaIST_E
StBvectorIS_IfSalfEESalS1_EE
StBvectorISt3maplSsfStdlessISsESalStdpairIKSsfEEESaIS? _E
St3mapIlSsdSt4lessISsESalSt4pairIKSsdEEE

To access these constants with another JANA program set your
JANA_CALIB_URL environment variable as follows:

setenv JANA_CALIB_URL "file:///Users/davidl/Desktop/tmps/calibl”

export JANA_CALIB_URL="file:///Users/davidl/Desktop/tmp/calibl”

1 events processed (61 events read) Average rate: 3.3Hz

L4

Recycled Containers &

A new templated Get() method has been added to JCalibration that instructs it to keep
ownership of the constants and just return a const pointer to the container.

Since STL vectors keep internal data sequential in memory, the values can be accessed
via a standard array pointer while maintaining const correctness.

... in factory class definition ...
const double *fcal_gains;

... in brun() method ...

const vector<double> *my_fcal_gains;
loop->GetCalib(”FCAL/Energy/gains”, my_fcal_gains);
fcal_gains = &(my_fcal_gains->front());

... in evnt() method ...
double Ecorr = fcal_hit->E * fcal_gains[fcal_hit->1d];

fcal_gains[3] =1.2; // This will generate compile time error!

Summary

JANA's calibration database APl can be used now to develop code
using calibration constants kept in ASCII files. Code will not need to
be changed once a “real” database is created for the backend.

A proof-of-principle web service has been created for accessing
calibration constants over the web. This will likely be deployed in
the next couple of months for general use.

The --dumpcalibrations switch has been added to all JANA programs

allowing a snapshot of the constants used to be stored locally and
re-used on subsequent jobs.

Global storage (container recycling) has been added to the
JCalibration base class reducing the potential memory footprint as
well as potentially improving access speed.

