University of Massachusetts Amherst

Using Bethe Heitler Pairs as a Polarimeter in GlueX

Andrew Schick
BLTWG Meeting, Tuesday, March 302021

Use Bethe-Heitler pairs to measure linear photon polarization.

$$
\begin{array}{rl}
\mathrm{d} \sigma= & \left(\frac{1+\mathcal{P}}{2}\right) \mathrm{d} \sigma_{\|}+\left(\frac{1-\mathcal{P}}{2}\right) \mathrm{d} \sigma_{\perp} \\
& =\left(\frac{\mathrm{d} \sigma_{\|}+\mathrm{d} \sigma_{\perp}}{2}\right)+\mathcal{P}\left(\frac{\mathrm{d} \sigma_{\|}-\mathrm{d} \sigma_{\perp}}{2}\right) \\
\uparrow & \begin{array}{c}
\text { Unpolarized }
\end{array} \\
\mathrm{d} \sigma_{0} & \mathrm{~d} \sigma_{1} \\
\text { Polarized }
\end{array}
$$

Use Bethe-Heitler pairs to measure linear photon polarization.

$$
\begin{array}{rl}
\mathrm{d} \sigma= & \left(\frac{1+\mathcal{P}}{2}\right) \mathrm{d} \sigma_{\|}+\left(\frac{1-\mathcal{P}}{2}\right) \mathrm{d} \sigma_{\perp} \\
& =\left(\frac{\mathrm{d} \sigma_{\|}+\mathrm{d} \sigma_{\perp}}{2}\right)+\mathcal{P}\left(\frac{\mathrm{d} \sigma_{\|}-\mathrm{d} \sigma_{\perp}}{2}\right) \\
\uparrow & \begin{array}{c}
\text { Unpolarized }
\end{array} \\
\mathrm{d} \sigma_{0} & \mathrm{~d} \sigma_{1} \\
\text { Polarized }
\end{array}
$$

$$
\mathrm{d} \sigma_{1} \sim P_{\gamma}\left|\vec{J}_{T}\right|^{2} \cos \left(2 \phi_{J_{T}}\right)
$$

Use Bethe-Heitler pairs to measure linear photon polarization.

$$
\begin{aligned}
& \mathrm{d} \sigma=\left(\frac{1+\mathcal{P}}{2}\right) \mathrm{d} \sigma_{\|}+\left(\frac{1-\mathcal{P}}{2}\right) \mathrm{d} \sigma_{\perp} \\
&=\left(\frac{\mathrm{d} \sigma_{\|}+\mathrm{d} \sigma_{\perp}}{2}\right)+\mathcal{P}\left(\frac{\mathrm{d} \sigma_{\|}-\mathrm{d} \sigma_{\perp}}{2}\right) \\
& \uparrow \underset{\sim}{\mathrm{d} \sigma_{0}} \\
& \text { Unpolarized } \mathrm{d} \sigma_{1} \\
& \text { Polarized }
\end{aligned}
$$

$$
\mathrm{d} \sigma_{1} \sim P_{\gamma}\left|\vec{J}_{T}\right|^{2} \cos \left(2 \phi_{J_{T}}\right) \quad \text { (Bakmaev, 2008) }
$$

$$
\vec{J}_{T}=\frac{\overrightarrow{p_{1}}}{p_{1}^{2}+m^{2}}+\frac{\overrightarrow{p_{2}}}{p_{2}^{2}+m^{2}}=\frac{\overrightarrow{p_{1}}}{c_{1}}+\frac{\overrightarrow{p_{2}}}{c_{2}}
$$

$\overrightarrow{p_{1}}, \overrightarrow{p_{2}}$ are the lepton's transverse momenta

Use Bethe-Heitler pairs to measure linear photon polarization.

$$
\begin{array}{rl}
\mathrm{d} \sigma= & \left(\frac{1+\mathcal{P}}{2}\right) \mathrm{d} \sigma_{\|}+\left(\frac{1-\mathcal{P}}{2}\right) \mathrm{d} \sigma_{\perp} \\
& =\left(\frac{\mathrm{d} \sigma_{\|}+\mathrm{d} \sigma_{\perp}}{2}\right)+\mathcal{P}\left(\frac{\mathrm{d} \sigma_{\|}-\mathrm{d} \sigma_{\perp}}{2}\right) \\
\uparrow & \uparrow \\
\mathrm{d} \sigma_{0} & \mathrm{C} \sigma_{1} \\
\text { Unpolarized } & \text { Polarized }
\end{array}
$$

$$
\mathrm{d} \sigma_{1} \sim P_{\gamma}\left|\vec{J}_{T}\right|^{2} \cos \left(2 \phi_{J_{T}}\right)
$$

$$
\vec{J}_{T}=\frac{\overrightarrow{p_{1}}}{p_{1}^{2}+m^{2}}+\frac{\overrightarrow{p_{2}}}{p_{2}^{2}+m^{2}}=\frac{\overrightarrow{p_{1}}}{c_{1}}+\frac{\overrightarrow{p_{2}}}{c_{2}}
$$

$\overrightarrow{p_{1}}, \overrightarrow{p_{2}}$ are the lepton's transverse momenta

Bakmaev's formulation is really only valid at very large t

Can we find a similar reduction in Heitler's born approximation formulation?

$$
\begin{aligned}
d \sigma= & \frac{Z^{2}}{137} \frac{e^{4}}{4 \pi^{2}} \frac{p_{+} p_{-} d E_{+} d \Omega_{+} d \Omega_{-}}{k^{3} q^{4}}\left\{\frac{\left(\boldsymbol{\varepsilon} \cdot \mathbf{p}_{+}\right)^{2}\left(q^{2}-4 E_{-}^{2}\right)}{\left(E_{+}-p_{+} \cos \theta_{+}\right)^{2}} \quad\right. \text { T.H. Berlin and L. Madansky (1950) } \\
& +\frac{\left(\boldsymbol{\varepsilon} \cdot \mathbf{p}_{-}\right)^{2}\left(q^{2}-4 E_{+}^{2}\right)}{\left(E_{-}-p_{-} \cos \theta_{-}\right)^{2}}-\frac{2\left(\boldsymbol{\varepsilon} \cdot \mathbf{p}_{+}\right)\left(\boldsymbol{\varepsilon} \cdot \mathbf{p}_{-}\right)\left(q^{2}+4 E_{+} E_{-}\right)}{\left(E_{+}-p_{+} \cos \theta_{+}\right)\left(E_{-}-p_{-} \cos \theta_{-}\right)} \\
& \left.+\frac{k^{2}\left[p_{+}^{2} \sin ^{2} \theta_{+}+p_{-}^{2} \sin ^{2} \theta_{-}+2 p_{+} p_{-} \sin \theta_{+} \sin \theta_{-} \cos \left(\varphi_{+}-\varphi_{-}\right)\right]}{\left(E_{+}-p_{+} \cos \theta_{+}\right)\left(E_{-}-p_{-} \cos \theta_{-}\right)}\right\} .
\end{aligned}
$$

$\boldsymbol{\varepsilon}$ is a unit vector in the direction of polarization of the incident photon.

Can we find a similar reduction in Heitler's born approximation formulation?

$$
\begin{aligned}
d \sigma= & \frac{Z^{2}}{137} \frac{e^{4}}{4 \pi^{2}} \frac{p_{+} p_{-} d E_{+} d \Omega_{+} d \Omega_{-}}{k^{3} q^{4}}\left\{\frac{\left(\boldsymbol{\varepsilon} \cdot \mathbf{p}_{+}\right)^{2}\left(q^{2}-4 E_{-}^{2}\right)}{\left(E_{+}-p_{+} \cos \theta_{+}\right)^{2}} \quad\right. \text { T.H. Berlin and L. Madansky (1950) } \\
& +\frac{\left(\boldsymbol{\varepsilon} \cdot \mathbf{p}_{-}\right)^{2}\left(q^{2}-4 E_{+}^{2}\right)}{\left(E_{-}-p_{-} \cos \theta_{-}\right)^{2}}-\frac{2\left(\boldsymbol{\varepsilon} \cdot \mathbf{p}_{+}\right)\left(\boldsymbol{\varepsilon} \cdot \mathbf{p}_{-}\right)\left(q^{2}+4 E_{+} E_{-}\right)}{\left(E_{+}-p_{+} \cos \theta_{+}\right)\left(E_{-}-p_{-} \cos \theta_{-}\right)} \\
& \left.+\frac{k^{2}\left[p_{+}^{2} \sin ^{2} \theta_{+}+p_{-}^{2} \sin ^{2} \theta_{-}+2 p_{+} p_{-} \sin \theta_{+} \sin \theta_{-} \cos \left(\varphi_{+}-\varphi_{-}\right)\right]}{\left(E_{+}-p_{+} \cos \theta_{+}\right)\left(E_{-}-p_{-} \cos \theta_{-}\right)}\right\} .
\end{aligned}
$$

$\boldsymbol{\varepsilon}$ is a unit vector in the direction of polarization of the incident photon.

$$
\mathrm{d} \sigma_{1} \sim\left|\vec{J}_{T}\right|^{2} \cos \left(2 \phi_{J_{T}}\right), \quad \overrightarrow{J_{T}}=f_{1} \overrightarrow{p_{1}}+f_{2} \overrightarrow{p_{2}}
$$

Can we find a similar reduction in Heitler's born approximation formulation?

\longrightarrow Yes! If we write:

$$
\begin{aligned}
& \vec{J}_{T}=\frac{2 E_{2}}{E_{1}-p_{1} \cos \theta_{1}} \vec{p}_{1_{T}}+\frac{2 E_{2}}{E_{2}-p_{2} \cos \theta_{2}} \vec{p}_{2_{T}} \\
& \vec{K}_{T}=\frac{\sqrt{q^{2}}}{E_{1}-p_{1} \cos \theta_{1}} \vec{p}_{T}-\frac{\sqrt{q^{2}}}{E_{2}-p_{2} \cos \theta_{2}} \vec{p}_{2_{T}}
\end{aligned}
$$

$$
\begin{aligned}
d \sigma= & \frac{Z^{2}}{137} \frac{e^{4}}{4 \pi^{2}} \frac{p_{+} p_{-} d E_{+} d \Omega_{+} d \Omega_{-}}{k^{3} q^{4}}\left\{\frac{\left(\boldsymbol{\varepsilon} \cdot \mathbf{p}_{+}\right)^{2}\left(q^{2}-4 E_{-}^{2}\right)}{\left(E_{+}-p_{+} \cos \theta_{+}\right)^{2}}\right. \\
& +\frac{\left(\boldsymbol{\varepsilon} \cdot \mathbf{p}_{-}\right)^{2}\left(q^{2}-4 E_{+}^{2}\right)}{\left(E_{-}-p_{-} \cos \theta_{-}\right)^{2}}-\frac{2\left(\boldsymbol{\varepsilon} \cdot \mathbf{p}_{+}\right)\left(\boldsymbol{\varepsilon} \cdot \mathbf{p}_{-}\right)\left(q^{2}+4 E_{+} E_{-}\right)}{\left(E_{+}-p_{+} \cos \theta_{+}\right)\left(E_{-}-p_{-} \cos \theta_{-}\right)} \\
& \left.+\frac{k^{2}\left[p_{+}^{2} \sin ^{2} \theta_{+}+p_{-}^{2} \sin ^{2} \theta_{-}+2 p_{+} p_{-} \sin \theta_{+} \sin \theta_{-} \cos \left(\varphi_{-}-\varphi_{-}\right)\right]}{\left(E_{+}-p_{+} \cos \theta_{+}\right)\left(E_{-}-p_{-} \cos \theta_{-}\right)}\right\} .
\end{aligned}
$$

$\boldsymbol{\varepsilon}$ is a unit vector in the direction of polarization of the incident photon.

Can we find a similar reduction in Heitler's born approximation formulation?

\longrightarrow Yes! If we write:

$$
\begin{aligned}
& \vec{J}_{T}=\frac{2 E_{2}}{E_{1}-p_{1} \cos \theta_{1}} \vec{p}_{p_{T}}+\frac{2 E_{2}}{E_{2}-p_{2} \cos \theta_{2}} \vec{p}_{2_{T}} \\
& \vec{K}_{T}=\frac{\sqrt{q^{2}}}{E_{1}-p_{1} \cos \theta_{1}} \vec{p}_{1_{T}}-\frac{\sqrt{q^{2}}}{E_{2}-p_{2} \cos \theta_{2}} \vec{p}_{2_{T}}
\end{aligned}
$$

$$
\mathrm{d} \sigma=\mathrm{d} \sigma_{0}+P_{\gamma} \mathrm{d} \sigma_{1}
$$

$$
\left.\mathrm{d} \sigma_{0}=\frac{\mathrm{d} \sigma_{\|}+\mathrm{d} \sigma_{\perp}}{2}=k\left[-\left|\vec{J}_{T}\right|^{2}+\left|\vec{K}_{T}\right|^{2}+\left.2 E_{0}^{2} \frac{\mid \overrightarrow{p_{1}}+\overrightarrow{p_{2}}}{}\right|^{2} E_{1}-p_{1} \cos \theta_{1}\right)\left(E_{2}-p_{2} \cos \theta_{2}\right)\right]
$$

$$
\mathrm{d} \sigma_{1}=\frac{\mathrm{d} \sigma_{\|}-\mathrm{d} \sigma_{\perp}}{2}=k\left[-\left|\vec{J}_{T}\right|^{2} \cos 2 \phi_{J_{T}}+\left|\vec{K}_{T}\right|^{2} \cos 2 \phi_{J_{T}}\right]
$$

Can we find a similar reduction in Heitler's born approximation formulation?

\longrightarrow Yes! If we write:

$$
\begin{aligned}
& \vec{J}_{T}=\frac{2 E_{2}}{E_{1}-p_{1} \cos \theta_{1}} \vec{p}_{p_{T}}+\frac{2 E_{2}}{E_{2}-p_{2} \cos \theta_{2}} \vec{p}_{2_{T}} \\
& \vec{K}_{T}=\frac{\sqrt{q^{2}}}{E_{1}-p_{1} \cos \theta_{1}} \vec{p}_{1_{T}}-\frac{\sqrt{q^{2}}}{E_{2}-p_{2} \cos \theta_{2}} \vec{p}_{2_{T}}
\end{aligned}
$$

$$
\mathrm{d} \sigma=\mathrm{d} \sigma_{0}+P_{\gamma} \mathrm{d} \sigma_{1}
$$

$$
\left.\mathrm{d} \sigma_{0}=\frac{\mathrm{d} \sigma_{\|}+\mathrm{d} \sigma_{\perp}}{2}=k\left[-\left|\vec{J}_{T}\right|^{2}+\left|\vec{K}_{T}\right|^{2}+\left.2 E_{0}^{2} \frac{\mid \overrightarrow{p_{1}}+\overrightarrow{p_{2}}}{}\right|^{2} E_{1}-p_{1} \cos \theta_{1}\right)\left(E_{2}-p_{2} \cos \theta_{2}\right)\right]
$$

$$
\mathrm{d} \sigma_{1}=\frac{\mathrm{d} \sigma_{\|}-\mathrm{d} \sigma_{\perp}}{2}=k\left[-\left|\vec{J}_{T}\right|^{2} \cos 2 \phi_{J_{T}}+\left|\vec{K}_{T}\right|^{2} \cos 2 \phi_{J_{T}}\right] \quad \text { Generally, }\left|\vec{J}_{T}\right|^{2} \gg\left|\vec{K}_{T}\right|^{2}
$$

$$
\mathrm{d} \sigma=\mathrm{d} \sigma_{0}+P_{\gamma} \mathrm{d} \sigma_{1} \quad \mathrm{~d} \sigma_{1}=\sim\left|\vec{J}_{T}\right|^{2} \cos 2 \phi_{J_{T}}
$$

MC with BH Cross-Section

$$
\begin{aligned}
d \sigma= & \frac{Z^{2}}{137} \frac{e^{4}}{4 \pi^{2}} \frac{p_{+}+p_{-} d E_{+} d \Omega_{+} d \Omega_{-}}{k^{3} q^{4}}\left\{\frac{\left(\mathbf{\varepsilon} \cdot \mathbf{p}_{+}\right)^{2}\left(q^{2}-4 E_{-}^{2}\right)}{\left(E_{+}-p_{+} \cos \theta_{+}\right)^{2}}\right. \\
& +\frac{\left(\boldsymbol{\varepsilon} \cdot \mathbf{p}_{-}\right)^{2}\left(q^{2}-4 E_{+}^{2}\right)}{\left(E_{-}-p_{-} \cos \theta_{-}\right)^{2}}-\frac{2\left(\boldsymbol{\varepsilon} \cdot \mathbf{p}_{+}\right)\left(\boldsymbol{\varepsilon} \cdot \mathbf{p}_{-}\right)\left(q^{2}+4 E_{+} E_{-}\right)}{\left(E_{+}-p_{+} \cos \theta_{+}\right)\left(E_{-}-p_{-} \cos \theta_{-}\right)}
\end{aligned}
$$

$$
P_{\gamma}=1
$$

1. Generate e+e- 4 vectors using this cross section
2. Plot $\phi_{J_{T}}$ from the 4 vectors
3. Measuring $\phi_{J_{T}}$ allows you to infer the beam polarization

2018-01 GlueX data $\gamma p \rightarrow e^{+} e^{-}(p)$ Reaction Filter

Neural Net Cuts:

Neural Net Classification Cuts (NN1, NN2 < 0.2)
Fiducial Cuts:
$8.2 \mathrm{GeV}<E_{\gamma}<8.8 \mathrm{GeV}$
$0.25 \mathrm{GeV}<W_{e e}<0.621 \mathrm{GeV}$
Both tracks have hits in the TOF
$\theta_{1}, \theta_{2}>1.5 \mathrm{deg}$
FCAL Elasticity > 0.9
Vertex cut (Window free): $52<\mathrm{z}<78 \mathrm{~cm}$

$\gamma p \rightarrow e^{+} e^{-}(p)$ 2018-01 GlueX data, w/ fiducial+N.N. cuts

$$
\begin{aligned}
& \frac{Y_{\perp}(\phi)-\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}{Y_{\perp}+\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}=\frac{\Sigma \cos 2 \phi\left(P_{\perp}+P_{\|}\right)}{2+\Sigma \cos 2 \phi\left(P_{\perp}-P_{\|}\right)} \\
& N_{\perp}=311346 \\
& N_{\text {|| }}=325538 \\
& \frac{N_{\perp}}{N_{\|}}=0.9564 \\
& \text { 2018-01 GlueX data, } \gamma p \rightarrow e^{+} e^{-}(p) \\
& \text { Yield Asymmetry } \\
& 0 / 90 \text { runs } \\
& \text { 45/135 runs }
\end{aligned}
$$

2018-01 GlueX data, $\gamma p \rightarrow e^{+} e^{-}(p)$

Just Numerator

$$
Y_{\perp}(\phi)-\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi) \quad 0 / 90 \text { pol. Orientation }
$$

Just Denominator

$$
Y_{\perp}(\phi)+\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)
$$

Just Denominator

$$
Y_{\perp}(\phi)+\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)
$$

$$
\frac{Y_{\perp}(\phi)-Y_{\|}(\phi)}{Y_{\perp}+Y_{\|}(\phi)}=\Sigma \cos 2 \phi
$$

$$
\frac{Y_{\perp}(\phi)-\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}{Y_{\perp}+\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}=\frac{\Sigma \cos 2 \phi\left(P_{\perp}+P_{\|}\right)}{2}
$$

Simulated Yield Asymmetry

$$
\frac{Y_{\perp}(\phi)-Y_{\|}(\phi)}{Y_{\perp}+Y_{\|}(\phi)}=\Sigma \cos 2 \phi
$$

Simulated Yield Asymmetry

$\frac{Y_{\perp}(\phi)-\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}{Y_{\perp}+\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}=\frac{\Sigma \cos 2 \phi\left(P_{\perp}+P_{\|}\right)}{2}$
2018-01 Pol = 0 and 90 runs Data Yield Asymmetry

$$
\frac{Y_{\perp}(\phi)-Y_{\|}(\phi)}{Y_{\perp}+Y_{\|}(\phi)}=\Sigma \cos 2 \phi
$$

Simulated Yield Asymmetry

$$
\frac{Y_{\perp}(\phi)-\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}{Y_{\perp}+\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}=\frac{\Sigma \cos (2 \phi+\alpha)\left(P_{\perp}+P_{\|}\right)}{2}
$$

2018-01 Pol = 0 and 90 runs Data Yield Asymmetry

$$
\frac{Y_{\perp}(\phi)-\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}{Y_{\perp}+\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}=\frac{\Sigma \cos (2 \phi+\alpha)\left(P_{\perp}+P_{\|}\right)}{2+\Sigma \cos (2 \phi+\alpha)\left(P_{\perp}-P_{\|}\right)}
$$

0 and 90 Yield Asymmetry

$$
\begin{aligned}
& P_{\perp}+P_{\|}=0.6025 \pm 0.011 \quad \alpha=-8.62 \pm 1.12(\mathrm{deg}) \\
& P_{\perp}-P_{\|}=0.0091 \pm 0.0737
\end{aligned}
$$

Nothing to be gained from trying to fit $\left(P_{\perp}-P_{\|}\right)$. It is effectively 0 .

2018-01 GlueX data, $\gamma p \rightarrow e^{+} e^{-}(p), \quad \phi_{J_{T}}$ Yield Asymmetry

$$
\frac{Y_{\perp}(\phi)-\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}{Y_{\perp}+\frac{N_{\perp}}{N_{\|}} Y_{\|}(\phi)}=\frac{\Sigma \cos (2 \phi+\alpha)\left(P_{\perp}+P_{\|}\right)}{2}
$$

SUMMARY SO FAR

TPOL expected polarization for energy range $8.2<E_{\gamma}<8.8$

$$
\overline{\mathscr{P}}_{\gamma}=0.3399 \pm 0.0125
$$

Chisq method: Measured with ϕ of J_{T}, pol 0 config runs

$$
\mathscr{P}_{\gamma}=0.2860 \pm 0.0016
$$

Yield asymmetry method: Average polarization between 0 and 90 runs:

$$
\frac{\mathscr{P}_{\perp}+\mathscr{P}_{\|}}{2}=0.0301 \pm 0.0060
$$

Yield asymmetry method: Average polarization between 45 and 135 runs:

$$
\frac{\mathscr{P}_{\perp}+\mathscr{P}_{\|}}{2}=0.2895 \pm 0.0058
$$

Backup Slides

TPOL Value for the BH events

Polarization values for E_gamma between $\mathbf{8 . 2}$ and $\mathbf{8 . 8} \mathrm{GeV}$

Beam orientation	Polarization
0 degrees:	$0.3420+/-0.0063$
45 degrees:	$0.3474+/-0.0065$
90 degrees:	$0.3478+/-0.0063$
135 degrees:	$0.3517+/-0.0065$

Table 1

$$
\begin{array}{l|l|}
\hline 8.3 & 106740 \\
\hline 8.5 & 113046 \\
\hline 8.7105752 \\
\hline
\end{array}
$$

Bethe-Heitler Data Beam Energy

$8.2<E_{\gamma}<8.8 \quad \overline{\mathscr{P}}_{\gamma}=0.3399 \pm 0.0125$

BH Event Selection w/ Neural Nets

Analyzing data

e/m separation using Machine Learning

- ROOT's TMVA package
- Two multi-layer perceptron neural nets-one for $\mathrm{e}^{+} / \pi+$ separation, and one for $\mathbf{e}-/ \pi-$
- Classify single tracks as $\mathrm{e} \pm$ or $\pi \pm$, but only keep for analysis events where both tracks pass as e+/e-, or $\pi+/ \pi-$
$\cdot \pi+/ \pi$ - signal training using GlueX 2018-01 ρ^{0} data with $\gamma p \rightarrow \pi^{+} \pi^{-} p$ reaction filter, $700 \mathrm{MeV}<W_{\pi \pi}<770 \mathrm{MeV}$
- e+/e- background training using Bethe-Heitler Monte Carlo, $\gamma p \rightarrow e^{+} e^{-}(p)$ reaction filter

Cuts for Training Samples

ρ^{0} DATA, $\gamma p \rightarrow \pi^{+} \pi^{-} p \quad$ (signal)

- Default GlueX analysis launch cuts
- $8.11 \mathrm{GeV}<E_{\gamma}<8.88 \mathrm{GeV}$
- TOF $d E / d x>0$ for both tracks
- $700 \mathrm{MeV}<W_{\pi \pi}<770 \mathrm{MeV}$

BH MC, $\gamma p \rightarrow e^{+} e^{-}(p) \quad$ (bkgnd)

- Default GlueX analysis launch cuts
- $8.11 \mathrm{GeV}<E_{\gamma}<8.88 \mathrm{GeV}$
- TOF $d E / d x>0$ for both tracks

3 Training Variables

Energy deposited by track in FCAL/tracks momentum
DOCA: Distance between shower centroid and track projection.

E9/E25: Sum of energy deposited in 3×3 grid of FCAL blocks, divided by the sum of energy in a 5×5 grid

Neural Net Responses from ρ^{0} data/BH MC training

Training: $\pi+/ \mathrm{e}+$ classifier output

LEFT: 2018 GlueX data containing BH pairs and ρ°. Use NN to classify and separate.

RIGHT: 2018 GlueX data containing π^{0} Dalitz decay. Select for pions and see how many e+e- pairs from π^{0} get through.

Same neural net and cut on NN response used in both studies

Early Attempts to measure the polarization (January 2021)

Neural Net Cut:

NN1,NN2 < 0.2
Fiducial Cuts Require:
$8.12<E_{\gamma}<8.88 \mathrm{GeV}$
FCAL Elasticity > 0.9
Theta1,Theta2 > 1.5 deg
0.25 GeV < W < 0.621 GeV

$J(\vec{\theta})=\frac{1}{2}\left(\theta_{1} \vec{H}_{1}+\theta_{2} \vec{H}_{2}-\vec{y}\right)^{2}$
find $\vec{\theta}$ such that $J(\vec{\theta})$ is minimized (gradient descent)

$$
\min [J(\vec{\theta})]=\min \left[\frac{1}{2}\left(\theta_{0} \vec{H}_{0}+\theta_{1} \vec{H}_{1}-\vec{y}\right)^{2}\right] \Rightarrow \vec{\theta}=\left[\begin{array}{ll}
0.2773, & 0.1111
\end{array}\right]
$$

$\sigma_{\theta_{0}}^{2}=\frac{1}{\sum_{i} H_{i}^{0} H_{i}^{0} / J_{i}} \quad \sigma_{\theta_{1}}^{2}=\frac{1}{\sum_{i} H_{i}^{1} H_{i}^{1} / J_{i}} \quad P_{\gamma}=\frac{\theta_{1}}{\theta_{0}+\theta_{1}}=\frac{0.1111}{0.3883}=0.2860$

$$
\sigma_{0}^{2}=1.3053 \times 10^{-6} \quad \sigma_{1}^{2}=1.2014 \times 10^{-6}
$$

Denominator first: $\quad f=A+B \quad \sigma_{f}=\sqrt{\sigma_{A}^{2}+\sigma_{B}^{2}+2 \sigma_{A B}}$

$$
\sigma_{d}^{2}=\sigma_{0}^{2}+\sigma_{1}^{2}=1.3053 \times 10^{-6}+1.2014 \times 10^{-6}=2.5067 \times 10^{-6}
$$

Numerator is just: $\quad \sigma_{n}=\sigma_{1}$

$$
f=\frac{A}{B}
$$

$$
\sigma_{f} \approx|f| \sqrt{\left(\frac{\sigma_{A}}{A}\right)^{2}+\left(\frac{\sigma_{B}}{B}\right)^{2}-2 \frac{\sigma_{A B}}{A B}}
$$

$$
\sigma \approx\left|\frac{\theta_{1}}{\theta_{0}+\theta_{1}}\right| \sqrt{\left(\frac{\sigma_{1}}{\theta_{1}}\right)^{2}+\left(\frac{\sigma_{d}}{\theta_{0}+\theta_{1}}\right)^{2}}=|0.2860| \sqrt{\frac{1.2014 \times 10^{-6}}{0.2773^{2}}+\frac{2.5067 \times 10^{-6}}{0.3883^{2}}}=0.0016241
$$

$P_{\gamma}=0.2860 \pm 0.0016$

$$
P_{\gamma}=\frac{\theta_{1}}{\theta_{0}+\theta_{1}}=\frac{0.1111}{0.3883}=0.2860
$$

Error associated with P_{γ} is given by

$$
\sigma_{P_{\gamma}}^{2}=\left[\frac{\partial P_{\gamma}}{\partial \theta_{0}} \sigma_{\theta_{0}}\right]^{2}+\left[\frac{\partial P_{\gamma}}{\partial \theta_{1}} \sigma_{\theta_{1}}\right]^{2}
$$

$$
\sigma_{\theta_{0}}^{2}=\frac{1}{\sum_{i} H_{0}^{(i)} H_{0}^{(i)} / y^{(i)}}=1.3053 \times 10^{-6} \quad \sigma_{\theta_{1}}^{2}=\frac{1}{\sum_{i} H_{1}^{(i)} H_{1}^{(i)} / y^{(i)}}=1.2014 \times 10^{-6}
$$

$$
\begin{gathered}
\frac{\partial P_{\gamma}}{\partial \theta_{0}}=-\frac{\theta_{1}}{\left(\theta_{0}+\theta_{1}\right)^{2}}=-\frac{0.1111}{(0.3883)^{2}}=-0.7369 \quad\left(\frac{\partial P_{\gamma}}{\partial \theta_{0}}\right)^{2}=0.5430 \\
\frac{\partial P_{\gamma}}{\partial \theta_{1}}=\frac{1}{\theta_{0}+\theta_{1}}-\frac{\theta_{1}}{\left(\theta_{0}+\theta_{1}\right)^{2}}=\frac{1}{0.3883}-0.7369=1.8384 \quad\left(\frac{\partial P_{\gamma}}{\partial \theta_{1}}\right)^{2}=3.3797 \\
\sigma_{P_{\gamma}}^{2}=\left[\frac{\partial P_{\gamma}}{\partial \theta_{0}} \sigma_{\theta_{0}}\right]^{2}+\left[\frac{\partial P_{\gamma}}{\partial \theta_{1}} \sigma_{\theta_{1}}\right]^{2}=(0.5430) \cdot\left(1.3053 \times 10^{-6}\right)+(3.3797) \cdot\left(1.2014 \times 10^{-6}\right)=4.7691 \times 10^{-6} \\
\sigma_{P_{\gamma}}=0.0021
\end{gathered}
$$

Polarization values for E_gamma between $\mathbf{8 . 2}$ and $\mathbf{8 . 8} \mathrm{GeV}$

Beam orientation	Polarization
0 degrees:	$0.3420+/-0.0063$
45 degrees:	$0.3474+/-0.0065$
90 degrees:	$0.3478+/-0.0063$
135 degrees:	$0.3517+/-0.0065$

Table 1

$$
\begin{array}{l|l|}
\hline 8.3 & 106740 \\
\hline 8.5 & 113046 \\
\hline 8.7105752 \\
\hline
\end{array}
$$

Bethe-Heitler Data Beam Energy

$8.2<E_{\gamma}<8.8 \quad \overline{\mathscr{P}}_{\gamma}=0.3399 \pm 0.0125$

SUMMARY SO FAR

TPOL expected polarization for energy range $8.2<E_{\gamma}<8.8$

$$
\overline{\mathscr{P}}_{\gamma}=0.3399 \pm 0.0125
$$

Chisq method: Measured with ϕ of J_{T}, pol 0 config runs

$$
\mathscr{P}_{\gamma}=0.2860 \pm 0.0016
$$

Yield asymmetry method: Average polarization between 0 and 90 runs:

$$
\frac{\mathscr{P}_{\perp}+\mathscr{P}_{\|}}{2}=0.2996 \pm .0060
$$

Tighter cut on invariant mass ($300 \mathrm{MeV}<\mathrm{W} 500 \mathrm{MeV}$) does not fix asymmetry. This is likely due to calibration. Jobs to test this are running now but may be statistics limited. Will submit for new reconstruction of 2018-01 data set.

What if I just take right side?

Then I get . 30449 for a polarization.

Asymmetric peaks maybe are part of the problem, but not enough to get results to agree with tpol.

0 degree polarization orientation
45 degree polarization orientation

90 degree polarization orientation

Comparing data from separate pol. runs:

135 degree polarization orientation
All exhibit asymmetry

University of Massachusetts
100% pol positron

100\% pol electron

RUNNING SIMULATION WITH THE ELECTRON BEAM OFFSET ON THE COLLIMATOR

$$
\gamma p \rightarrow e^{+} e^{-}(p) \text { reaction filter. }
$$

SIMULATION WITH ELECTRON BEAM OFFSET ON COLLIMATOR 1mm along 45 deg

100\% polarization

2018-01 DATA
0 deg orientation runs

Does not produce an asymmetry

