

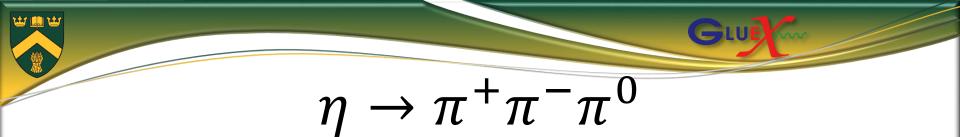
Decay Kinematics for η Simulations

Jon Zarling

1

- Basics of η decay kinematics for a few modes • Probably review for some, sorry
- And their implementation within GlueX software framework
- Top four decay modes implemented, more on to-do list

Simulation Framework


- genEtaRegge handles η production

 Can input kinematicsEvtGen handles η decays
 for each decay mode in this framework
 Also, by default uses PHOTOS for final state radiation
- For 3+ body decay modes, the kinematics may deviate from phase space quite significantly!

CLUE

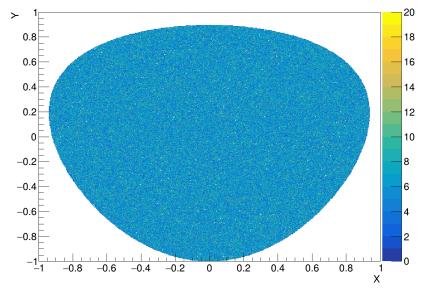
Decay Modes Implemented (so far)

- $\eta \rightarrow \gamma \gamma$ (is just phase space, nothing to add)
- $\eta \rightarrow \pi^+ \pi^- \pi^0$ (all work by Sean + Daniel)
- $\eta
 ightarrow \pi^0 \pi^0 \pi^0$ (new)
- $\eta \rightarrow \pi^+ \pi^- \gamma$ (updated)

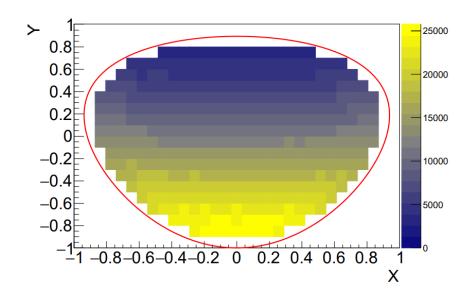
 Kinematic distribution usually expressed in terms of Dalitz parameters X, Y

• X ∝ π^+ , π^- momentum difference in rest frame • Y ∝ π^0 momentum in rest frame

- Distribution of events (amplitude squared) expressed as Taylor expansion |A(X,Y)|² = N (aY + bY² + cX + dX² + eXY + fY³ + gX²Y + ···)
- Inputs to EvtGen: *a*, *b*, ..., *f*, *g* constants measured from past experiments

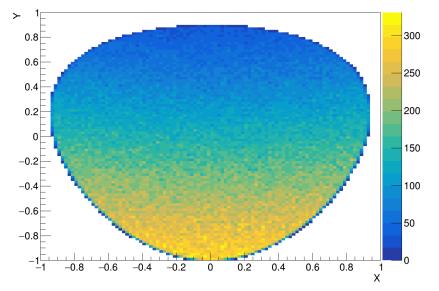

• Use "ETA_DALITZ_GLUEX".

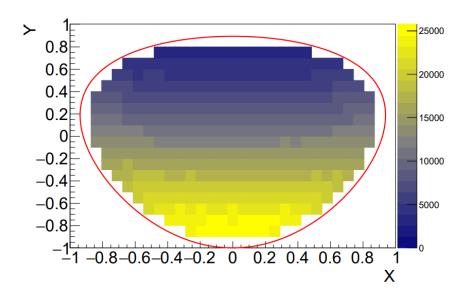
• Not "ETA_DALITZ"! This is from the 70's.


$\eta \rightarrow \pi^+ \pi^- \pi^0$ Dalitz Distribution

Phase space

 $\pi^{+}\pi^{-}\pi^{0}$ Dalitz Distribution


KLOE https://arxiv.org/pdf/1601.06985.pdf



 $\pi^+\pi^-\pi^0$ Dalitz Distribution

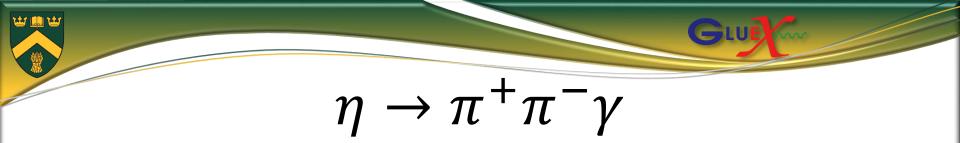
KLOE https://arxiv.org/pdf/1601.06985.pdf

• Same formalism as $\eta \rightarrow \pi^+ \pi^- \pi^0$

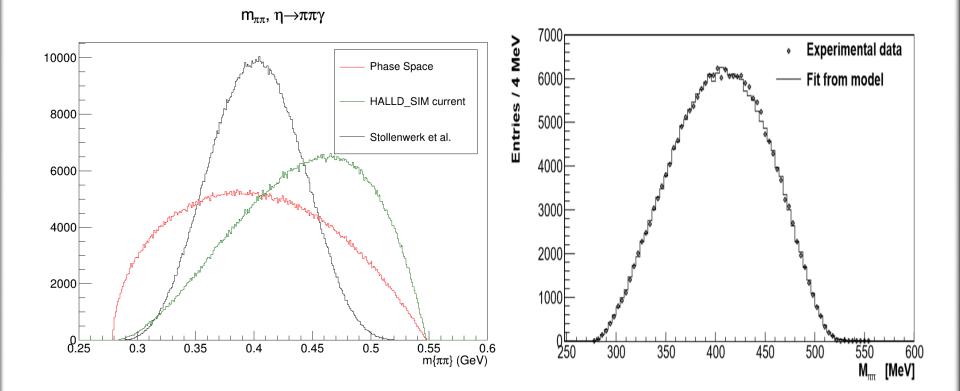
 \circ Except the three π^0 s are identical particles

• Only radial direction of (X,Y) plot matters ($z \equiv X^2 + Y^2$)

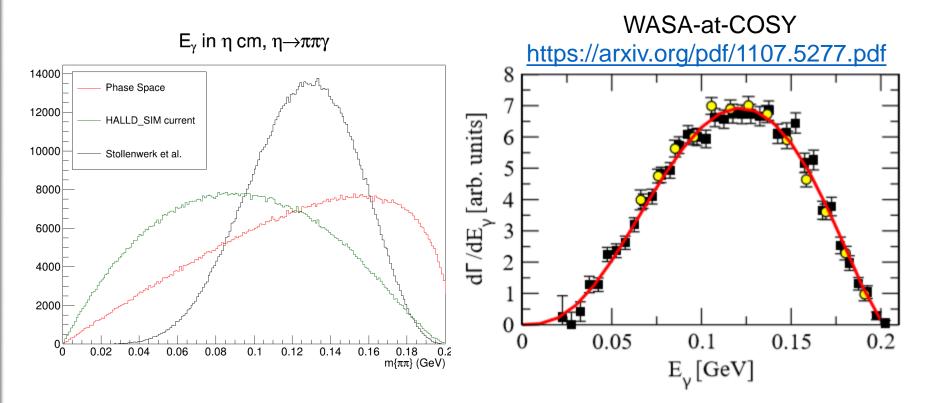
• Event distribution:


 $|A(z)|^2 = N(1 + 2\alpha z + \beta z^{3/2} \sin(3\phi) + 2\gamma z^2 + \cdots)$ o Input parameters α, β, γ

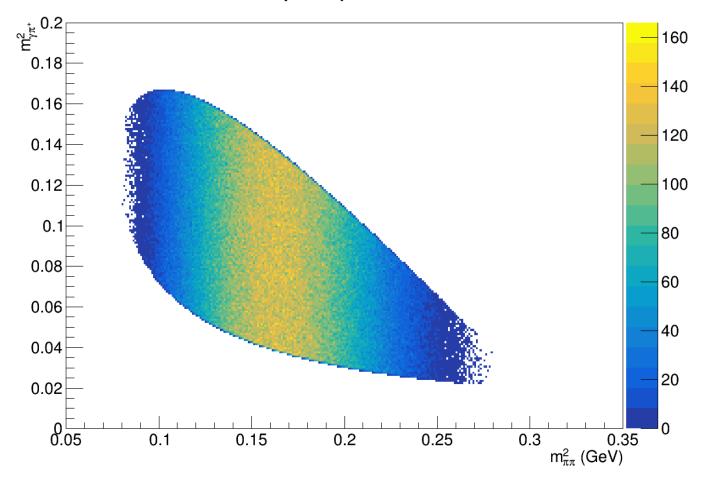
- Deviations from phase space quite small
 - $\circ \alpha$ measured reasonably well
 - $\circ \beta$, γ small, less precisely known


ឃ 🛄 ឃ

• [bug found, need to fix]



- Assuming P-wave dominance
- Event distribution as a function of s_{ππ} (≡ m²_{ππ}):
 A(s) = |P(s)F_V(s)|²Γ₀(s)
 P(s) a process specific part, must be measured
 - \circ F_V vector form factory, process independent
 - $\circ \Gamma_0$ kinematical factors
- Quantities described: $m_{\pi\pi}$ and E_{γ} distributions
- Ref: F. Stollenwerk et al. <u>https://arxiv.org/abs/1108.2419v3</u>


GLUE $\rightarrow \pi^+\pi^-\gamma$: E_γ Distribution η

13

Dalitz Mass^2 Plot, $\eta \rightarrow \pi^+ \pi^- \gamma$

 $\eta \rightarrow \pi \pi \gamma$ Dalitz

This ok for $\pi^+\pi^-$ in a P-wave?

Backup: How To Create η Decay Model

- All development happens in HALLD_SIM repository

 \$HALLD_SIM_HOME/src/libraries/EVTGEN_MODELS
 Add model here (follow examples)
 - o Be sure to recompile genEtaRegge and decay