Setup of Triplet Polarimeter at JLab

- Motor setup (4/2, 4/3, 4/6)
- Survey (4/7)
- Installation in hall $(4 / 8,4 / 9)$

April 8, 2015

Kei Moriya, Michael Dugger

Motor Setup

- With Hovanes, Scot
- Problems on Thursday, Friday :(
- Turns out plate to push switches was not insulated from rest of arm

- Installed nylon screws for insulation (Monday)

Motor Controls

- Control motor for radiators remotely
- Same setup as in hall
- Hovanes will provide GUI for counting house

Motor Control Procedure

- Turn controller on (initial beep, then "happy" beep)
- Log on to counting house machines (gluonNN, we used gluon31)
- From outside JLab requires ssh'ing to login.jlab.org \rightarrow hallgw (need key fob) \rightarrow gluon31
- Open terminal, type firefox -no-remote -ProfileManager
- Go to halldxps1.jlab.org
- Log in as Administrator Motor Control Procedure
- All controls we use are in Move tab
- "Initialize" will power on motor
- "Home" will set motor to pre-programmed home position (sets to 0)
- Abs move will move motor to positions in coordinate system

Noise Levels with ${ }^{90} \mathrm{Sr}$

HV:200V
 $10 \mathrm{mV} / 10 \mathrm{~ms}$

Did not see change in noise levels when motor was turned on

$\mathrm{HV}: 200 \mathrm{~V}$
$20 \mathrm{mV} / 10 \mu \mathrm{~s}$
signal

Outgas Tests With Motor

- After pump down of 16 hours
- Outgas rate $\mathrm{dP} / \mathrm{dt}=0.242 \mathrm{mTorr} / \mathrm{min}$
- Define $\mathrm{Q}_{0}=\mathrm{V}(\mathrm{dP} / \mathrm{dt})$, V : chamber volume
- Define $\mathrm{Q}_{\mathrm{u}}=(\mathrm{dV} / \mathrm{dt}) \mathrm{P}_{\mathrm{u}}, \mathrm{P}_{\mathrm{u}}$: ultimate pressure
- Want $\mathrm{Q}_{\mathrm{u}}>10 \mathrm{Q}_{0}$ to ensure secure vacuum

- Numeric values using $V=29.5$ liters, $(\mathrm{dV} / \mathrm{dt})=100$ liter/s, $\mathrm{P}_{\mathrm{u}}=2 \times 10^{-5}$ Torr gives $\mathrm{Q}_{\mathrm{u}}=2 \times 10^{-3}$ Torr liter/s $>10 \times \mathrm{Q}_{0}=10 \times\left(1.19 \times 10^{-4}\right)$

Survey

- Meeting on Monday, survey on Tuesday
- Survey machine will use references to set up coordinate system
- Does fits to determine position of objects of known shape???

Survey Results

- 500 motor steps measured to be $86.18 \mathrm{~mm} \rightarrow$ step size is 0.17236 mm
- Position of radiators are calibrated, and will be hardcoded by Hovanes in mm into our controls
- Our alignment seemed fine except:
- detector was 0.14 mm lower, 1.37 mm more towards door than designed
- converter tray is 2.1 mm low compared to detector center (2.4 mm low at far end and 1.8 mm low at end near door) - should not be a problem
- Converter tray openings are $3 / 4$ inch (19 mm). First collimator is 5 mm (3.4 mm nominal size), second collimator is 10 mm - should not be a problem

Photon Beam Collimation

Even with 5 mm collimator, beam size at triplet should only be 5.5 mm

Survey Results

- The mechanical group has enough play in the beam pipe that they can center the detector on the beam line.
- The distance from the center of the converter tray (in z) is 35.4 mm away from the downstream face of the FR4 and detector. The detector is 1 mm and nearly flush with the face of FR4 \rightarrow We are about 34.9 mm from center of detector to center of converters (in z). Design was 35 mm . BUT there is some play in the z -direction of converter tray so the precision in the measurement is not as good as all other measurements.

Moving Detector to Hall

- Stripped all connections
- Took out detector
- Removed preamp and distribution box

nothing connected

Moving Detector to Hall

- Detector was moved to hall today, but was installed backwards (!)
- Concrete base destroyed, Tim says will be ready by tomorrow afternoon

beam position adjusting flange

OUTLOOK

- Waiting for Alex (Sasha) Somov for fADC self-triggering, setup. He should get this done soon, and we can probably do source tests in the hall with fADC readout.
- Need to reconnect all connections, test signals
- Install Be foils

