$\curlyvee \mathrm{p} \rightarrow \pi^{+} \pi^{-} \pi^{+} n$ Amplitude Analysis

Jake Bennett
Indiana University

Amplitude Analysis

- The intensity can be written

$$
I(\vec{x})=\frac{d N}{d \vec{x}}=\sum_{\alpha=1}^{N_{\text {sums }}}\left|\sum_{\beta=1}^{N_{a m p s} ; \alpha} V_{\alpha, \beta} A_{\alpha, \beta}(\vec{x})\right|^{2}
$$

- In this case, only one sum: $\pi^{+} \pi^{-} \pi^{+}$no polarization
- For each uniquely named amplitude in the configuration file, a complex parameter $V_{\alpha, \beta}$ is created
- $a_{1}(1.23)-$ width 0.4
b $a_{2}(1.318)-$ width 0.105
- $\pi_{1}(1.60)-$ width 0.2
v $\pi_{2}(1.67)-$ width 0.259

Amplitudes

- Parts of the amplitude may be factorized

$$
A_{\alpha, \beta}(\vec{x})=\prod_{i=1}^{N_{\text {factors } ; \alpha, \beta}} a_{i}\left(\vec{x} ; \overrightarrow{\theta_{i}}\right)
$$

- Angular distribution
- Breit-Wigners

Amplitudes

$X: a_{1} \rightarrow \rho \pi$ S-wave
$a_{2} \rightarrow \rho \pi$ D-wave
$\pi_{1} \rightarrow \rho \pi$ P-wave
$\rightarrow f_{2} \pi$ S-wave
$\pi_{2} \rightarrow \rho \pi$ P-wave

Input BW $_{X}$ and fit with production vertex as a function of the mass of X
Also fit angular distribution of the pions and the BW of the
 isobar

Amplitudes

$X: a_{1} \rightarrow \rho \pi S$-wave
$a_{2} \rightarrow \rho \pi$ D-wave
$\pi_{1} \rightarrow \rho \pi$ P-wave
$\rightarrow f_{2} \pi S$-wave
$\pi_{2} \rightarrow \rho \pi$ P-wave

Input BW ${ }_{X}$ and fit with production vertex as a function of the mass of X
Also fit angular distribution of the pions and the BW of the isobar

Amplitudes

$X: a_{1} \rightarrow \rho \pi$ S-wave
$a_{2} \rightarrow \rho \pi$ D-wave
$\pi_{1} \rightarrow \rho \pi$ P-wave $\rightarrow f_{2} \pi S$-wave
$\pi_{2} \rightarrow \rho \pi$ P-wave

Input BW_{X} and fit with
production vertex as a
function of the mass of X
Also fit angular distribution of the pions and the BW of the isobar

Normalization Integrals

- Need to calculate normalization integrals

$$
\int \eta(\vec{\Omega}) I(\vec{\Omega}) d \vec{\Omega}
$$

- Where $\eta(\vec{\Omega})$ is the detector acceptance
- Generate flat data sample
- Pass through detector and reconstruction

Data

- Generate (60k) data with amplitudes
- Pass through genr82hddm, hdgeant, mcsmear, full reconstruction code
- Generate (280k) flat data for normalization integrals
- Also passed through detector and reconstructed

$2 \mathrm{f}_{2} \pi \mathrm{~S}$

3π All Waves

