E^(*) Production Estimates

Kei Moriya Indiana University GlueX Physics Meeting January 27 2014

Estimate of **EYields**

- Recently I estimated
 - Acceptance of 4.2%, 1.6% for exclusive reconstruction of Ξ^- and $\Xi^-(1820)$ (not including BR($\Lambda \rightarrow p\pi^-$) = 0.639)
 - Estimated σ_{tot} of 15 nb, 1 nb → <u>production</u> of 9M and 600k events in Phase IV running
 - With current acceptances, expect 240k, 6k events to be <u>reconstructed</u>

PAC40 E Estimates

- Estimates done by Nathan, BDT studies by Justin
- Assumed 15 nb, 2nb σ_{tot} for $\Xi, \Xi(1530)$
- Assumed acceptance (from both exclusive and inclusive) of 10% each, based on $\Xi(1320)$ study only
- Leads to 800k, 100k reconstructed
- Exclusive reconstruction efficiencies are 1% and 3%
- For Ξ(1820), use pythia events of K⁺ K⁺ K⁻Λ events to estimate purity using BDT
- No estimates of $\Xi(1820) \sigma_{tot}$, yields

Comparison

• Assumed σ_{tot} is same

- Acceptance is 4.2%, 1.6% for me, 1%, 3% for Nathan
- Difference in acceptance: sim-recon versions, assumed production mechanisms

ground state =				Ξ(1820)				
study	t-slope	M _{Y*}	۲ _Y *		study	t-slope	M _{Y*}	۲ _Y *
PAC	I.4	1960	220		PAC	I.7	2700	1000
KM	3.0	1960	220		KM	3.0	2600	250

-1000

t-slopes are very different

E-Gen.Vertex Distributions

primary

secondary

tertiary

Primary vertices are uniform over target region

E-Recon.Vertex Distributions

primary

secondary

tertiary

Primary vertices are uniform over target region

Ξ-Gen. $|p| vs \theta - K^+ K^+\Lambda$

Ξ - Recon. $|p| vs \theta - K^+ K^+ \Lambda$

E- Comparison of two K⁺

Ξ - Gen. |p| vs θ - K⁻ pπ⁻

Ξ -Recon. |p| vs θ - K⁻ pπ⁻

E⁻ Comparison with Nathan

- t-slopes are 3.0 (mine) and 1.4 (Nathan)
- Acceptances are 4.09%, 4.11%
- Nathan reported ~1% for this channel

generated

E(1820) Gen. Vertex Distributions

secondary

primary

v for K 6 gen. v for K⁺ 10 $\frac{6}{\text{gen. v}}$ for proton 160 140 120 100 gen. v_{z}^{110} for K⁺ 2¹²⁰ 70 90 100 50 gen. v¹¹⁰ for proton¹²⁰ 60 80 60 70

Primary vertices are uniform over target region

E(1820) Recon. Vertex Distributions

secondary

primary

Primary vertices are uniform over target region

Ξ(1820) Gen. $|p| vs \theta - K^+ K^+\Lambda$

$\Xi(1820)$ Recon. |p| vs θ - K⁺ K⁺Λ

E(1820) Comparison of two K⁺

swapping the K⁺. We assign the K⁺ with higher |p| as "primary" K⁺

Ξ(1820) Gen. |p| vs θ - K⁻ pπ⁻

$\Xi(1820)$ Recon. |p| vs θ - K⁻ pπ⁻

E(1820) Mass Resolution

E(1820) Comparison with Nathan

t-slopes are 3.0 and 1.7

• acceptances are 1.56%, 2.06%

33% increase in acceptance due to different t-slope

- BW resolution: inputs are 24, 30 MeV; fit results with Voigtians are Γ = 19, 31 MeV and σ = 10.6, 6.4 MeV
- Nathan reported acceptance of ~3%

- upper limit of I.I nb for $\Xi^{-}(1820) \sigma_{tot}$

Conclusions

- Estimates of $\Xi^{(*)}$ yields has large uncertainties in
 - production mechanism (distribution of momenta)
 - $= \sigma_{tot} \qquad \text{unresolvable until we have data}$
 - Continue studies of acceptance, reconstruction, physics observables for $\Xi^{(*)}$ production
 - Also do background studies