Gain vs. Dark Current/Dark Rate

Yi Qiang 2012/1/19

- 1 mm² 50 um SiPM (S10362-11-050C)
 - FADC 250: 12-bit covers 0-0.5 V, 50 Ω , 4 ns, ×66 pre-amplifier:
 - 1 channel = $0.5V*4ns/4096/66/50\Omega = 1.48 \times 10^{-16} C = 925 e$
 - Average gain: 909 channels -> 0.84×10⁶
 - Gain from current/rate fit: 1.16×10⁶
 - Difference: 38%, could be explained
 by cross-talk and after pulsing
- First Article Units
 - QDC V792: 100 pC/Channel
 - ×66 pre-amplifier
 - Average gain from 3 samples: 0.56×10⁶
 - Dark current/Dark rate = 1.84 uA/15.1 MHz: 0.76×10^6
 - Difference: 36%, similar to 1 mm² case, but much smaller deviation is expected due to smaller cross-talk and after-pulsing with lower bias.

