Gain vs. Dark Current/Dark Rate Yi Qiang 2012/1/19 - 1 mm² 50 um SiPM (S10362-11-050C) - FADC 250: 12-bit covers 0-0.5 V, 50 Ω , 4 ns, ×66 pre-amplifier: - 1 channel = $0.5V*4ns/4096/66/50\Omega = 1.48 \times 10^{-16} C = 925 e$ - Average gain: 909 channels -> 0.84×10⁶ - Gain from current/rate fit: 1.16×10⁶ - Difference: 38%, could be explained by cross-talk and after pulsing - First Article Units - QDC V792: 100 pC/Channel - ×66 pre-amplifier - Average gain from 3 samples: 0.56×10⁶ - Dark current/Dark rate = 1.84 uA/15.1 MHz: 0.76×10^6 - Difference: 36%, similar to 1 mm² case, but much smaller deviation is expected due to smaller cross-talk and after-pulsing with lower bias.