GlueX Particle ID

Paul Mattione, Carnegie Mellon University

GlueX Physics Meeting

Overview

- ***** Sources of PID information:
 - * Drift Chambers:
 - * χ^2 from track reconstruction (charged)
 - * χ^2 from dE/dx in the drift chambers (charged)
 - ***** TOF/BCAL/FCAL:
 - * χ^2 from time-of-flight (charged and neutral)
 - ***** χ^2 from dE/dx in the TOF (charged)
- ***** Calculate total χ^2 , FOM for each PID hypothesis
- * Particle ID: Hypothesis with highest FOM
- All information saved: User can perform custom PID

GlueX Physics Meeting

Paul Mattione, Carnegie Mellon University

Track Reconstruction χ^2

- ***** For each track candidate, create a track hypothesis for each PID
- * Wire-based and time-based track reconstruction of each hypothesis
- ***** Use track reconstruction χ^2 from time-based fit

$$\chi^2 = r C_r r^T$$
 (r: Kalman-filtered residual, C: covariance ma

Paul Mattione, Carnegie Mellon University

September 12, 2011

trix)

Drift Chamber $dE/dx \chi^2$

- ***** For each CDC/FDC hit used for the track:
 - Calculate the measured and most probable dE/dx (dx = path length in straw)
- ***** Compare the total dE/dx's, calculate χ^2

$$\chi^{2} = \frac{\left(\sum \frac{dE}{dx}_{Hit} - \sum \frac{dE}{dx}_{Probable}\right)^{2}}{\sigma_{\Delta \frac{dE}{dx}}^{2}}$$

Paul Mattione, Carnegie Mellon University

Charged Particle TOF χ^2

- ***** If both SC and TOF/BCAL/FCAL hits:
 - Project TOF/BCAL/FCAL time to track vertex (beamline POCA))
 - * If hits in multiple systems: use BCAL, then TOF, then FCAL hits
 - ***** TOF: best time resolution, but BCAL: significant energy loss
 - * Select beam bunch with SC time, project RF time to track vertex
 - * Compare projected times, calculate χ^2

$$\chi^2 = \frac{(t_{RF} - t_{Hit})^2}{\sigma_{\Delta t}^2}$$

(Times projected to vertex (beamline POCA))

Paul Mattione, Carnegie Mellon University

Charged Particle TOF χ^2

- ***** If **NOT** both SC and TOF/BCAL/FCAL hits:
 - ***** Cannot calculate χ^2 : Not enough timing information
 - * If no SC hit cannot use RF time: this track may be an accidental (from another beam bunch)
 - * If an accidental, a false PID may match the RF time

$$\chi^2 = : ($$

Neutral Particle TOF χ^2

- Neutral Track: each BCAL/FCAL shower that is not matched to EACH PID hypothesis of any charged track
- For each neutral track, create a hypothesis for each ID (γ, n) & vertex combination
 - Vertices: groups of charged tracks; if no charged tracks, then center of target
- * Project BCAL/FCAL shower time to vertex, compare to vertex time: calculate χ^2

$$\chi^{2} = \frac{(t_{Vertex} - t_{Shower})^{2}}{\sigma_{\Delta t}^{2}}$$

(Shower time projected to vertex)

GlueX Physics Meeting

Paul Mattione, Carnegie Mellon University

TOF dE/dx χ^2

- Calculate the measured and most probable dE/dx
- * Compare the total dE/dx's, calculate χ^2
- * Can this be done for the BCAL as well?

$$\chi^{2} = \frac{\left(\frac{dE}{dx Hit} - \frac{dE}{dx Probable}\right)^{2}}{\sigma_{\Delta \frac{dE}{dx}}^{2}}$$

Paul Mattione, Carnegie Mellon University

Particle Classes

- Particle classes detailed at: <u>http://www.jlab.org/Hall-D/software/wiki/index.php/</u> <u>Mattione_Particle_Classes</u>
- * PID information is saved at:
 - * χ^2 from track reconstruction: DTrackTimeBased
 - * χ^2 from dE/dx in the drift chambers: DTrackTimeBased
 - * χ² from time-of-flight: DChargedTrackHypothesis and DNeutralTrackHypothesis
 - * χ^2 from dE/dx in the TOF: NA, will be in DChargedTrackHypothesis
 - ***** FOM: DChargedTrackHypothesis and DNeutralTrackHypothesis
 - * PID: First DChargedTrackHypothesis in DChargedTrack, and first DNeutralTrackHypothesis in DNeutralTrack
- Vertex-independent data: DVertexIndependentResults
 - Contains DChargedTrack & DNeutralShowerCandidate

GlueX Physics Meeting

Paul Mattione, Carnegie Mellon University