

12000 Jefferson Avenue Newport News, VA 23606

SPECIFICATION NO:

D00000-01-08-S006

TITLE: Hall D DIRC Water System Purity DATE: July 2, 2018

Monitoring Plan

BY: Tim Whitlatch

Check: Justin Stevens APP: Eugene Chudakov

GlueX DIRC Principal Hall D Leader

APP: T. Whitlatch

Hall D Engineer

REV	ECO #	DESCRIPTION	ВҮ	CHK.	APP.	APP.	DATE

TABLE OF CONTENTS

1.0	SCOPE	3
2.0	APPLICABLE DOCUMENTS	3
3.0	TECHNICAL REQUIREMENTS	3
4.0	QUALITY REQUIREMENTS	4
5.0	HANDLING, PACKING, AND DELIVERY	4

- 1.0 SCOPE The DIRC water system is required to be optically clear in the 300-400 nm range. In order to accomplish this, the source water comes from JLAB Low Conductivity Water (LCW) Supply. This water is 2 Mohm/cm conductivity and is filtered to 5 microns. We then filter it to 1 micron before filling the holding tank (fig. 1). The polishing skid passes the water through UV sterilizers to kill the bacteria and then through a 0.2 micron filter to remove dead bacteria and other debris. A vacuum de-gassing membrane is used to remove dissolved gases before being pumped into the Optical Boxes. The water is continuously circulated to accomplish 2-3 water change outs per 24 hours. This specification defines the plan for monitoring the water optical clarity.
 - **1.1 Statement of Work.** Samples of water shall be taken and analyzed periodically to develop a baseline for optical clarity of the water. Analysis includes bacteria, minerals and metals included in section 3 as well as pH and disolved gases. The laser monitoring system will be used throughout the life of the experiment to monitor the combination of water clarity and PMT efficiency.

1.2 Vendor supplied analysis

1.2.1 J R Reed and Associates will perform the bacteria, metals and mineral tests per the appropriate method given section 2.0. Hall D personnel will take samples in vendor supplied containers and deliver to vendor.

1.3 JLAB supplied analysis -

- **1.3.1** Dissolved gas analysis will be performed by Hall D staff using a suitable testing kit such as Hach test kit for CO2 and O2.
- **1.3.2** pH will be tested by Hall D staff using appropriate test strips.
- **2.0 APPLICABLE DOCUMENTS –** The following codes and standards will be used to analyze the water samples;

2.1Codes and Standards

- 2.1.1 EPA Method 200.7 Determination of metals and trace elements in water and waste by inductively coupled Plasma Atomic-Emission Spectroscopy.
- 2.1.2 SM 4500-SiC Standard Methods for the Examination of Water and Wastewater

3.0 TECHNICAL REQUIREMENTS

		QUANTITATION
PARAMETER	METHOD	LEVEL (mg/L)
Coliform (Present/Absent)	Colilert	Present/Absent
Boron	200.7	0.005
Nickel	200.7	0.005

Sodium	200.7	0.05	
Copper	200.7	0.001	
Aluminum	200.7	0.05	
Iron	200.7	0.01	
Chromium	200.7	0.001	
Molybdenum	200.7		
Silica (Reactive)	SM 4500 SiC	2	
CO2/O2	Hatch Kit	1.25	
рН	Strips	7	

4.0 TRAINING REQUIREMENTS

4.1 Mechanical Staff will be trained in the proper methods for taking samples as well as using dissolved gas test kits and pH strips.

5.0 SCHEDULE

5.1 Water samples will be analyzed as a minimum, prior to each run and immediately afterwards. In addition, if there is a change in the efficiency of the PMTs, an additional test will be required to determine if the water has changed. There is a 10 day turn around in receiving the results of the analysis.

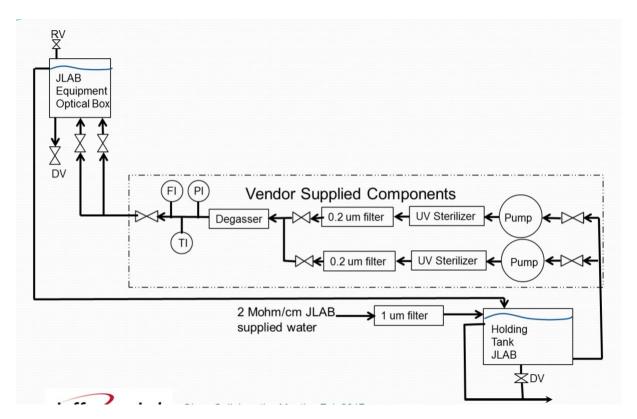


Figure 1 General flow schematic