Single coil Quench Analysis- Hall D (Solenoid)

Probir Kumar Ghoshal and Renuka Rajput-Ghoshal (16th May 2013)

March 2013_Copper Channel as built
Version 6.0
This worksheet assumes that all the stored energy of the magnet is dumped into single coil.
For multi-coil system calculations should be repeated for all coils.
This document is based on all the formulas given in Martin Wilson's book (used for Magnet design)
This worksheet calculates the following parameters for quenching coils:

1. U-Function and how quickly the coils must discharge to avoid thermal damage
2. MPZ and MPZ energy, measures of conductor stability
3. Quench Velocities and quench propagation times
4. Quench decay time and predicted peak temperatures \& voltages
5. It is important that these preliminary calculations are supplimented with a proper quench model if the magnet is complex or has a large stored energy.
6. The is PRIMARILY CARRIED OUT BASE ON COIL \#1A of HALL D solenoid

Stabilizer width

$$
\mathrm{w}_{\mathrm{st}}:=7.62 \mathrm{~mm}
$$

Stabilizer thickness
$\mathrm{t}_{\mathrm{st}}:=2.197 \mathrm{~mm}$
Channel width

$$
\mathrm{w}_{\mathrm{ch}}:=\mathrm{w}_{\mathrm{st}}=7.62 \mathrm{~mm}
$$

Chanel thickness

$$
\mathrm{t}_{\mathrm{ch}}:=0.9398 \mathrm{~mm}
$$

$$
\operatorname{RRR}_{\mathrm{m}}:=100 \quad \mathrm{RRR}_{\mathrm{st}}:=120
$$

RRR value for the matrix=100 RRR value for Stabilizer=120

Total conductor area including copper channel Acon

$$
\mathrm{A}_{\mathrm{con}}:=2 \mathrm{w}_{\mathrm{st}} \cdot \mathrm{t}_{\mathrm{st}}+\mathrm{w}_{\mathrm{ch}} \cdot \mathrm{t}_{\mathrm{ch}}
$$

Wire diameter
Number of wires
Material in the conductor
Wire Area

Channel occupied by cable

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{con}}=40.644 \mathrm{~mm}^{2} \\
& \mathrm{~d}_{\mathrm{w}}:=0.127 \mathrm{~mm} \\
& \mathrm{~N}_{\mathrm{w}}:=87
\end{aligned}
$$

$$
\text { mat }:=4
$$

$$
\mathrm{A}_{\mathrm{w}}:=\mathrm{N}_{\mathrm{w}}\left(\frac{\pi}{4}\right) \cdot \mathrm{d}_{\mathrm{w}}^{2}=1.102 \mathrm{~mm}^{2}
$$

$$
\mathrm{A}_{\mathrm{ch}}:=\mathrm{w}_{\mathrm{ch}} \cdot \mathrm{t}_{\mathrm{ch}}=7.161 \mathrm{~mm}^{2}
$$

This is NbTi wire diameter
Number of NbTi wire in conductor
This is matrix to superconductor ratio
No of starnds

$$
\mathrm{N}_{\mathrm{s}}:=\operatorname{round}\left(\frac{\mathrm{A}_{\mathrm{ch}}}{\mathrm{~A}_{\mathrm{w}}}\right)=6
$$

Wire copper area

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{wcu}}:=\mathrm{N}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{w}} \cdot \frac{\mathrm{mat}}{1+\mathrm{mat}}=5.29 \mathrm{~mm}^{2} \\
& \mathrm{~A}_{\mathrm{nt}}:=\mathrm{N}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{w}} \cdot \frac{1}{1+\mathrm{mat}}=1.323 \mathrm{~mm}^{2} \\
& \mathrm{~A}_{\mathrm{vo}}:=\mathrm{A}_{\mathrm{ch}}-6 \cdot \mathrm{~A}_{\mathrm{w}}=0.549 \mathrm{~mm}^{2} \\
& \mathrm{t}_{\mathrm{i}}:=1.02 \mathrm{~mm}
\end{aligned}
$$

Wire NbTi Area

Inter pancake insulation

$$
\mathrm{t}_{\mathrm{ip}}:=2.34 \mathrm{~mm}
$$

Ground plane insulation

$$
\mathrm{t}_{\mathrm{ig}}:=5 \mathrm{~mm}
$$

Width unit cell

$$
\mathrm{w}_{\mathrm{u}}:=\mathrm{w}_{\mathrm{st}}+2 \cdot \mathrm{t}_{\mathrm{i}}=9.66 \mathrm{~mm}
$$

Unit cell thickness

$$
\mathrm{t}_{\mathrm{u}}:=2 \mathrm{t}_{\mathrm{st}}+\mathrm{t}_{\mathrm{ch}}+2 \cdot \mathrm{t}_{\mathrm{i}}=7.374 \mathrm{~mm}
$$

Unit cell area

$$
\mathrm{A}_{\mathrm{u}}:=\mathrm{w}_{\mathrm{u}} \cdot \mathrm{t}_{\mathrm{u}}=71.231 \mathrm{~mm}^{2}
$$

Insulation area

Stabalizer area

Total Copper area

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{i}}:=\mathrm{A}_{\mathrm{u}}-\mathrm{A}_{\mathrm{con}}=30.587 \mathrm{~mm}^{2} \\
& \mathrm{~A}_{\mathrm{st}}:=\mathrm{A}_{\mathrm{con}}-\mathrm{A}_{\mathrm{ch}}=33.482 \mathrm{~mm}^{2}
\end{aligned}
$$

Insulation area is (unit cell area -conductor area) and stabilizer area is (conductor area-channel area)
$\mathrm{A}_{\mathrm{Cut}}:=\mathrm{A}_{\mathrm{st}}+6 \cdot \mathrm{~A}_{\mathrm{wcu}}=65.222 \mathrm{~mm}^{2}$

Over Unit cell

Cu to Sc ratio

$$
\begin{array}{ll}
\lambda_{\mathrm{st}}:=\frac{\mathrm{A}_{\mathrm{st}}}{\mathrm{~A}_{\mathrm{u}}}=0.47 & \lambda_{\mathrm{wcu}}:=\frac{\mathrm{A}_{\mathrm{wcu}}}{\mathrm{~A}_{\mathrm{u}}}=0.074 \\
\lambda_{\mathrm{cu}}:=\lambda_{\mathrm{st}}+\lambda_{\mathrm{wcu}}=0.544 & \lambda_{\mathrm{vo}}:=\frac{\mathrm{A}_{\mathrm{vo}}}{\mathrm{~A}_{\mathrm{u}}}=7.704 \times 10^{-3} \\
\lambda_{\mathrm{nt}}:=\frac{\mathrm{A}_{\mathrm{nt}}}{\mathrm{~A}_{\mathrm{u}}}=0.019 & \lambda_{\mathrm{i}}:=\frac{\mathrm{A}_{\mathrm{i}}}{\mathrm{~A}_{\mathrm{u}}}=0.429
\end{array}
$$

$$
\text { CuSc_R }:=\frac{\lambda_{\mathrm{cu}}}{\lambda_{\mathrm{nt}}}=29.317
$$

check if all the ratio are correct

$$
\lambda_{\mathrm{cu}}+\lambda_{\mathrm{nt}}+\lambda_{\mathrm{vo}}+\lambda_{\mathrm{i}}=1
$$

Winding Composition

The following materials make up the conductor:

Area of NbTi:	$\mathrm{A}_{\mathrm{NbTi}}:=\mathrm{A}_{\mathrm{nt}}$	$\mathrm{A}_{\mathrm{NbTi}}=1.323 \cdot \mathrm{~mm}^{2}$
Area of Copper:	$\mathrm{A}_{\mathrm{Cu}}:=\mathrm{A}_{\mathrm{wcu}}$	$\mathrm{A}_{\mathrm{Cu}}=5.29 \cdot \mathrm{~mm}^{2}$
Area of Copper channel:	$\mathrm{A}_{\mathrm{CuCh}}:=\mathrm{A}_{\mathrm{St}}=33.482 \mathrm{~mm}^{2}$	
Area of solder	$\mathrm{A}_{\mathrm{vo}}=0.549 \mathrm{~mm}^{2}$	
Area of insulation	$\mathrm{A}_{\mathrm{i}}=30.587 \mathrm{~mm}^{2}$	2 of 15

Coil Parameters

Coil dimensions: Coil Parameters

The coil block dimensions for the smallest coil in present solenoid design are:
$\mathrm{R}_{1}:=1018 \cdot \mathrm{~mm} \quad \Delta \mathrm{R}:=174 \cdot \mathrm{~mm}$
$\mathrm{R}_{2}:=\mathrm{R}_{1}+\Delta \mathrm{R} \quad \mathrm{R}_{2}=1.192 \times 10^{3} \mathrm{~mm}$
$\mathrm{Z}_{1}:=0 \mathrm{~mm} \quad \Delta \mathrm{Z}:=117.14 \mathrm{~mm}$
$\mathrm{Z}_{2}:=\mathrm{Z}_{1}+\Delta \mathrm{Z} \quad \mathrm{Z}_{2}=117.14 \mathrm{~mm}$

$$
\mathrm{L}_{\text {pinner }}:=2 \pi \cdot \mathrm{R}_{1} \quad \mathrm{~L}_{\text {pouter }}:=2 \pi \cdot \mathrm{R}_{2}
$$

$$
\mathrm{L}_{\text {pinner }}=6.396 \times 10^{3} \mathrm{~mm}
$$

$$
\mathrm{L}_{\text {pouter }}=7.49 \times 10^{3} \mathrm{~mm}
$$

$$
\mathrm{L}_{\text {paverage }}:=\frac{\left(\mathrm{L}_{\text {pinner }}+\mathrm{L}_{\text {pouter }}\right)}{2}
$$

$$
L_{\text {paverage }}=6.943 \times 10^{3} \mathrm{~mm}
$$

Coil dimensions: Layer to layer:

$$
\mathrm{H}_{\mathrm{L}}:=\mathrm{R}_{2}-\mathrm{R}_{1}
$$

$$
\mathrm{H}_{\mathrm{L}}=174 \cdot \mathrm{~mm}
$$

Turn to turn:

$$
\mathrm{w}_{\mathrm{T}}:=\mathrm{Z}_{2}-\mathrm{Z}_{1}
$$

$\mathrm{W}_{\mathrm{T}}=117.14 \cdot \mathrm{~mm}$
Numbers of turns and layers:

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{T}}:=\operatorname{round}\left(\frac{\mathrm{W}_{\mathrm{T}}}{\mathrm{w}_{\mathrm{st}}+\mathrm{t}_{\mathrm{ip}}}\right) \quad \mathrm{N}_{\mathrm{T}}=12 \\
& \mathrm{~N}_{\mathrm{L}}:=\operatorname{round}\left(\frac{\mathrm{H}_{\mathrm{L}}}{2 \mathrm{t}_{\mathrm{st}}+\mathrm{t}_{\mathrm{ch}}+2 \mathrm{t}_{\mathrm{i}}}\right) \quad \mathrm{N}_{\mathrm{L}}=24 \\
& \mathrm{~N}_{\mathrm{C}}:=\mathrm{N}_{\mathrm{T}} \cdot \mathrm{~N}_{\mathrm{L}}=288 \quad \mathrm{AT}:=432000 \cdot \mathrm{~A} \\
& \mathrm{~L}_{\mathrm{p}}:=\mathrm{L}_{\text {paverage }}=6.943 \times 10^{3} \mathrm{~mm}
\end{aligned}
$$

The coil unit cell area is then and the area of epoxy glass is

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{c}}:=\mathrm{A}_{\mathrm{u}} \quad \mathrm{~A}_{\mathrm{c}}=71.231 \cdot \mathrm{~mm}^{2} \\
& \mathrm{~A}_{\mathrm{EG}}:=\mathrm{A}_{\mathrm{c}}-\mathrm{A}_{\mathrm{NbTi}}-\mathrm{A}_{\mathrm{Cu}}-\mathrm{A}_{\mathrm{CuCh}}-\mathrm{A}_{\mathrm{vo}}
\end{aligned}
$$

$$
\mathrm{A}_{\mathrm{EG}}=30.587 \cdot \mathrm{~mm}^{2}
$$

$$
\lambda_{\mathrm{NbTi}}:=\frac{\mathrm{A}_{\mathrm{NbTi}}}{\mathrm{~A}_{\mathrm{c}}} \quad \lambda_{\mathrm{Cu}}:=\frac{\mathrm{A}_{\mathrm{wcu}}}{\mathrm{~A}_{\mathrm{c}}} \quad \lambda_{\mathrm{CuCh}}:=\frac{\mathrm{A}_{\mathrm{st}}}{\mathrm{~A}_{\mathrm{c}}} \quad \lambda_{\mathrm{ins}}:=\frac{\mathrm{A}_{\mathrm{EG}}}{\mathrm{~A}_{\mathrm{c}}}
$$

$$
\lambda_{\mathrm{NbTi}}=0.019 \quad \lambda_{\mathrm{Cu}}=0.074 \quad \lambda_{\mathrm{CuCh}}=0.47 \quad \lambda_{\mathrm{ins}}=0.429 \quad \lambda_{\mathrm{vo}}=7.704 \times 10^{-3}
$$

Operating Conditions:

All the highlighted values in this section needs to be changed for the operting condition of the

coil. Maximum coil field is the maximum field in the coil being considered here. The effective total inductance is the inductance of all the coils connected in the circuit.

Operating current:

$$
\begin{aligned}
& \mathrm{I}_{0}:=\frac{\mathrm{AT}}{\mathrm{~N}_{\mathrm{C}}}=1.5 \times 10^{3} \cdot \mathrm{~A} \\
& \mathrm{~J}_{0}:=\frac{\mathrm{I}_{0}}{\mathrm{~A}_{\mathrm{c}}} \quad \mathrm{~J}_{0}=21.058 \cdot \mathrm{~A} \cdot \mathrm{~mm}^{-2}
\end{aligned}
$$

Maximum coil field: $\quad \mathrm{B}_{\max }:=2.97 \cdot \mathrm{~T} \quad$ Maximum field value

Operating temperature: $\quad \theta_{0}:=4.603 \cdot \mathrm{~K} \quad$ Operating temperature of the magnet

Effective total inductance acting on the quenching coil:

$$
\left(\mathrm{L}_{\mathrm{tot}}:=28.71 \cdot \mathrm{H}\right)
$$

Stored energy:

$$
\mathrm{E}_{\mathrm{st}}:=\frac{1}{2} \cdot \mathrm{~L}_{\mathrm{tot}} \cdot \mathrm{I}_{0}^{2} \quad \mathrm{E}_{\mathrm{st}}=3.23 \times 10^{7} \cdot \mathrm{~J}
$$

U-Function

Function U contains only the properties of material used in the winding. This function is used to calculate the maximum temperature in terms of initial current density and a characteristic time T_{d} for the current decya following a quench.

Heat balance assuming adiabatic conditions:

$$
J(t)^{2} \cdot \rho(\theta) \cdot d t=\gamma \cdot C(\theta) d \theta
$$

Chapter 9 of MNW's book equation 9.3

If the current density remains constant at the initial value for the whole of the decay time:

$$
\mathrm{J}_{0}{ }^{2} \cdot \mathrm{~T}_{\mathrm{d}}=\int_{\theta_{0}}^{\theta_{\max }} \frac{\gamma \cdot \mathrm{C}(\theta)}{\rho(\theta)} \mathrm{d} \theta=\mathrm{U}(\theta)
$$

Chapter 9 of MNW's book equation 9.4

Specific Heats

\rightarrow Reference:J:\CLAS12 Magnet\Expe_Pers\Quench_RRG_PKG\Material data\NbTi specific heat.xmcd
\rightarrow Reference:J:\CLAS12 Magnet\Expe_Pers\Quench_RRG_PKG\Material data\Copper specific heat.xmcd
\rightarrow Reference:J:\CLAS12 Magnet\Expe_Pers\Quench_RRG_PKG\Material data\Epoxy Glass specific heat.xmcd

Densities

$$
\begin{array}{ll}
\gamma_{\mathrm{NbTi}}:=6140 \cdot \mathrm{~kg} \cdot \mathrm{~m}^{-3} & \gamma_{\mathrm{EG}}:=1740 \cdot \mathrm{~kg} \cdot \mathrm{~m}^{-3} \\
\gamma_{\mathrm{Cu}}:=8930 \cdot \mathrm{~kg} \cdot \mathrm{~m}^{-3} & \gamma_{\mathrm{vo}}:=1 \cdot \mathrm{~kg} \cdot \mathrm{~m}^{-3}
\end{array}
$$

Overall Winding Density

$$
\begin{aligned}
& \gamma_{\mathrm{av}}:= \begin{array}{l}
\mathrm{A}_{\mathrm{CuCh}} \cdot \gamma_{\mathrm{Cu}}+\mathrm{A}_{\mathrm{Cu}} \cdot \gamma_{\mathrm{Cu}}+\mathrm{A}_{\mathrm{NbTi}} \cdot \gamma_{\mathrm{NbTi}} \cdots \\
+\mathrm{A}_{\mathrm{EG}} \cdot \gamma_{\mathrm{EG}}+\mathrm{A}_{\mathrm{vo}} \cdot \gamma_{\mathrm{vo}}
\end{array} \\
& \mathrm{~A}_{\mathrm{c}}
\end{aligned}
$$

Average Specific Heat Capacity

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{av}}(\theta):=\frac{\begin{array}{l}
\mathrm{A}_{\mathrm{CuCh}} \cdot \gamma_{\mathrm{Cu}} \cdot \mathrm{C}_{\mathrm{Cu}}(\theta)+\mathrm{A}_{\mathrm{Cu}} \cdot \gamma_{\mathrm{Cu}} \cdot \mathrm{C}_{\mathrm{Cu}}(\theta)+\mathrm{A}_{\mathrm{NbTi}} \cdot \gamma_{\mathrm{NbTi}} \cdot \mathrm{C}_{\mathrm{NbTi}}(\theta) \ldots \\
+\mathrm{A}_{\mathrm{EG}} \cdot \gamma_{\mathrm{eg}}(\theta)
\end{array}}{\begin{array}{l}
\mathrm{A}_{\mathrm{CuCh}} \cdot \gamma_{\mathrm{Cu}}+\mathrm{A}_{\mathrm{Cu}} \cdot \gamma_{\mathrm{Cu}}+\mathrm{A}_{\mathrm{NbTi}} \cdot \gamma_{\mathrm{NbTi}} \cdots \\
+\mathrm{A}_{\mathrm{EG}} \cdot \gamma_{\mathrm{EG}}+\mathrm{A}_{\mathrm{vo}} \cdot \gamma_{\mathrm{vo}}
\end{array}} \\
& \mathrm{C}_{\mathrm{Cu}}(4.5 \cdot \mathrm{~K})=0.164 \cdot \mathrm{~J} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1} \quad \mathrm{C}_{\mathrm{NbTi}}(4.5 \cdot \mathrm{~K})=0.108 \frac{1}{\mathrm{~kg} \cdot \mathrm{~K}} \cdot \mathrm{~J} \\
& \mathrm{C}_{\mathrm{eg}}(4.5 \cdot \mathrm{~K})=0.047 \frac{1}{\mathrm{~kg} \cdot \mathrm{~K}} \cdot \mathrm{~J}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{Cu}}\left(\theta_{0}\right)=0.173 \frac{1}{\mathrm{~kg} \cdot \mathrm{~K}} \cdot \mathrm{~J} & \mathrm{C}_{\mathrm{NbTi}}\left(\theta_{0}\right)=0.115 \frac{1}{\mathrm{~kg} \cdot \mathrm{~K}} \cdot \mathrm{~J} \\
\mathrm{C}_{\mathrm{eg}}\left(\theta_{0}\right)=0.05 \frac{1}{\mathrm{~kg} \cdot \mathrm{~K}} \cdot \mathrm{~J} & \\
\mathrm{C}_{\mathrm{av}}\left(\theta_{0}\right)=0.156 \cdot \mathrm{~J} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1} & \mathrm{C}_{\mathrm{av}}(295 \cdot \mathrm{~K})=595.105 \cdot \mathrm{~J} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}
\end{array}
$$

Resistivities

\rightarrow Reference:J:\CLAS12 Magnet\Expe_Pers\Quench_RRG_PKG\Material data\Copper resistivity.xmcd assume the resistivity of NbTi and solder to be 100 times that of copper:
$\Omega_{\mathrm{N}}^{\mathrm{NbWTaj}}(\theta):=\rho_{\mathrm{Cu}}(\theta, 100) \cdot 100 \quad \rho_{\mathrm{Cu}}(20 \cdot \mathrm{~K}, 50)=3.518 \times 10^{-10} \cdot \Omega \cdot \mathrm{~m}$
$\rho_{\mathrm{So}}(\theta):=\rho_{\mathrm{Cu}}(\theta, 100) \cdot 100$

Cu magnetoresistance factor $\quad m_{B}:=4 \cdot 10^{-11} \cdot \frac{\Omega \cdot m}{T} \quad$ Martin Wilson data
$\rho_{\mathrm{CuB}}(\theta, \mathrm{RRR}):=\rho_{\mathrm{Cu}}(\theta, \mathrm{RRR})+\mathrm{m}_{\mathrm{B}} \cdot \mathrm{B}_{\max }$
$\rho_{\mathrm{CuB}}\left(\theta_{0}, 100\right)=2.888 \times 10^{-10} \cdot \Omega \cdot \mathrm{~m}$

Average Resistivity

$$
\begin{gathered}
\rho_{\mathrm{av}}(\theta):=\frac{\mathrm{A}_{\mathrm{CuCh}}+\mathrm{A}_{\mathrm{Cu}}+\mathrm{A}_{\mathrm{NbTi}}}{\frac{\mathrm{~A}_{\mathrm{CuCh}}}{\rho_{\mathrm{CuB}}(\theta, 200)+\Delta \rho_{\mathrm{Cu}}\left(\mathrm{~B}_{\mathrm{max}}\right)}+\frac{\mathrm{A}_{\mathrm{Cu}}}{\rho_{\mathrm{CuB}}(\theta, 100)+\Delta \rho_{\mathrm{Cu}}\left(\mathrm{~B}_{\mathrm{max}}\right)}+\frac{\mathrm{A}_{\mathrm{NbTi}}}{\rho_{\mathrm{NbTi}}(\theta)}} \\
\frac{\rho_{\mathrm{av}}(100 \cdot \mathrm{~K})}{\mathrm{A}_{\mathrm{con}}+\mathrm{A}_{\mathrm{NbTi}}+\mathrm{A}_{\mathrm{vo}}}=1.023 \times 10^{-4} \cdot \Omega \cdot \mathrm{~m}^{-1} \begin{array}{l}
\text { Effective conductor resistance per } \\
\text { unit length. }
\end{array} \\
\frac{\rho_{\mathrm{av}}(100 \cdot \mathrm{~K})}{\mathrm{A}_{\mathrm{con}}+\mathrm{A}_{\mathrm{NbTi}}+\mathrm{A}_{\mathrm{vo}}} \cdot \mathrm{~L}_{\mathrm{p}}=7.101 \times 10^{-4} \Omega \quad \begin{array}{l}
\text { resistance per turn. }
\end{array} \\
\frac{\rho_{\mathrm{av}}(100 \cdot \mathrm{~K})}{\mathrm{A}_{\mathrm{con}}+\mathrm{A}_{\mathrm{NbTi}}+\mathrm{A}_{\mathrm{vo}}} \cdot \mathrm{~L}_{\mathrm{p}} \cdot \mathrm{~N}_{\mathrm{T}} \cdot \mathrm{~N}_{\mathrm{L}}=0.204 \Omega \quad \text { resistance of the coil. }
\end{gathered}
$$

Average resistivity of Cu calculation from MW's based on Room temperature value only!:

$$
\begin{array}{ll}
\rho_{\mathrm{RT}}:=1.678 \cdot 10^{-8} \Omega \cdot \mathrm{~m} & \rho_{\mathrm{ow}}:=\frac{\rho_{\mathrm{RT}}}{\mathrm{RRR}_{\mathrm{m}}}=1.678 \times 10^{-10} \cdot \Omega \cdot \mathrm{~m} \\
\rho_{\mathrm{cB}}:=\rho_{\mathrm{ow}}+\mathrm{m}_{\mathrm{B}} \cdot \mathrm{~B}_{\max }=2.866 \times 10^{-10} \cdot \Omega \cdot \mathrm{~m} & \rho_{\mathrm{och}}:=\frac{\rho_{\mathrm{RT}}}{\mathrm{RRR}_{\mathrm{st}}}=1.398 \times 10^{-10} \cdot \Omega \cdot \mathrm{~m} \\
\rho_{\mathrm{cBs}}:=\rho_{\mathrm{och}}+\mathrm{m}_{\mathrm{B}} \cdot \mathrm{~B}_{\max }=2.586 \times 10^{-10} \cdot \Omega \cdot \mathrm{~m} &
\end{array}
$$

Average over copper resistivity for Cu Matrix and Cu Channel:

$$
\rho_{\mathrm{cB}}:=\left(\frac{\mathrm{A}_{\mathrm{st}}}{\rho_{\mathrm{cBs}}}+\frac{\mathrm{A}_{\mathrm{wcu}}}{\rho_{\mathrm{cBw}}}\right)^{-1} \cdot \mathrm{~A}_{\mathrm{Cut}}=4.409 \times 10^{-10} \cdot \Omega \cdot \mathrm{~m}
$$

$\underline{\text { U-Function using average winding density, average winding specific heat and }}$ average winding resistivity.

$$
\mathrm{U}(\theta):=\int_{\theta_{0}}^{\theta} \frac{\gamma_{\mathrm{av}} \cdot \mathrm{C}_{\mathrm{av}}(\theta)}{\rho_{\mathrm{av}}(\theta)} \mathrm{d} \theta
$$

Equation 9.4 from MW's book
$\theta:=4.2 \cdot \mathrm{~K}, 8 \cdot \mathrm{~K} . .300 \cdot \mathrm{~K}$

To keep the peak temperature below 100 K , the decay time must be less than:
$\mathrm{T}_{\mathrm{d}}:=\frac{\mathrm{U}(100 \cdot \mathrm{~K})}{\mathrm{J}_{0}{ }^{2}} \quad \mathrm{U}(100 \cdot \mathrm{~K})=3.743 \times 10^{16} \cdot \mathrm{~A}^{2} \cdot \mathrm{~s} \cdot \mathrm{~m}^{-4} \quad \mathrm{~T}_{\mathrm{d}}=84.398 \mathrm{~s}$
U-Function using copper density, copper specific heat and copper resistivity.

$$
\mathrm{U}_{\mathrm{cu}}(\theta):=\int_{\theta_{0}}^{\theta} \frac{\gamma_{\mathrm{Cu}}{ }^{-\mathrm{C}_{\mathrm{Cu}}(\theta)}}{\rho_{\mathrm{Cu}}(\theta, 50)} \mathrm{d} \theta
$$

Equation 9.4 from MW's book

$$
\theta:=4.2 \cdot \mathrm{~K}, 8 \cdot \mathrm{~K} . .300 \cdot \mathrm{~K}
$$

To keep the peak temperature below 100 K , the decay time must be less than:
$\mathrm{T}_{\mathrm{cud}}:=\frac{\mathrm{U}_{\mathrm{cu}}(100 \cdot \mathrm{~K})}{\mathrm{J}_{0}{ }^{2}} \quad \mathrm{U}_{\mathrm{cu}}(100 \cdot \mathrm{~K})=6.345 \times 10^{16} \cdot \mathrm{~A}^{2} \cdot \mathrm{~s} \cdot \mathrm{~m}^{-4}$
$\mathrm{T}_{\mathrm{cud}}=143.081 \mathrm{~s}$

Quench Velocities

$$
\mathrm{V}_{\mathrm{z}}=\frac{\mathrm{J}_{0}}{\gamma \cdot \mathrm{C}} \cdot\left(\frac{\mathrm{~L}_{0} \cdot \theta_{\mathrm{s}}}{\theta_{\mathrm{s}}-\theta_{0}}\right)^{\frac{1}{2}}
$$

Mean Quench Temperature

θ_{s} is average of the generation temperature (when current sharing starts) and the critical temperature when the conductor is fully normal.

$\left(\mathrm{I}_{\mathrm{c}}(\mathrm{B}):=3787.6 \mathrm{~A}-462.82 \cdot \mathrm{~A} \cdot \mathrm{~T}^{-1} \cdot \mathrm{~B}\right)$

$$
\mathrm{J}_{\mathrm{c}}:=\frac{\mathrm{I}_{\mathrm{c}}\left(\mathrm{~B}_{\max }\right)}{\mathrm{A}_{\mathrm{NbTi}}} \quad \mathrm{~J}_{\mathrm{c}}=1.825 \times 10^{3} \cdot \mathrm{~A} \cdot \mathrm{~mm}^{-2} \quad \mathrm{~J}_{\mathrm{c}} \cdot \mathrm{~A}_{\mathrm{NbTi}}=2.413 \times 10^{3} \mathrm{~A}
$$

$\theta_{\mathrm{c} 0}:=9.35 \cdot \mathrm{~K} \quad$ Zero field critical temperature
$B_{c 0}:=14.05 \cdot \mathrm{~T} \quad$ Zero temperature critical field
$\mathrm{J}_{\mathrm{sc}}:=\frac{\mathrm{I}_{0}}{\mathrm{~A}_{\mathrm{NbTi}}} \quad \mathrm{J}_{\mathrm{sc}}=1.134 \times 10^{3} \cdot \mathrm{~A} \cdot \mathrm{~mm}^{-2}$ current density in the superconductor
$\theta_{c}:=\theta_{c 0} \cdot\left(1-\frac{B_{\max }}{B_{c 0}}\right)^{0.59} \quad \theta_{g}:=\theta_{c}-\left(\theta_{c}-\theta_{0}\right) \cdot \frac{J_{\text {sc }}}{J_{c}}$
$\theta_{\mathrm{c}}=8.128 \mathrm{~K} \quad \theta_{\mathrm{g}}=5.937 \mathrm{~K} \quad\left(\Delta \theta_{\text {margin }}:=\theta_{\mathrm{g}}-\theta_{0}=1.334 \mathrm{~K}\right)$
$\theta_{\mathrm{s}}:=\frac{\theta_{\mathrm{c}}+\theta_{\mathrm{g}}}{2} \quad \theta_{\mathrm{S}}=7.032 \mathrm{~K}$

Longitudinal Quench Velocity

$\mathrm{L}_{0}:=2.45 \cdot 10^{-8} \mathrm{~W} \cdot \mathrm{ohm} \cdot \mathrm{K}^{-2}$

Lorenz number

Adiabatic quench velocity for conductors which are not cooled, e.g., fully impregnated coil is given
by equation 9.18 in MW's book

$$
\mathrm{v}_{\mathrm{z}}:=\frac{\mathrm{J}_{0}}{\gamma_{\mathrm{av}} \cdot \mathrm{C}_{\mathrm{av}}\left(\theta_{\mathrm{s}}\right)} \cdot\left(\frac{\mathrm{L}_{0} \cdot \theta_{\mathrm{s}}}{\theta_{\mathrm{s}}-\theta_{0}}\right)^{\frac{1}{2}} \quad \mathrm{~V}_{\mathrm{z}}=2.096 \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}
$$

This estimate includes the specific heat capacity of the epoxy glass filler, however, MW argues that this should be excluded and the heat capacity of the metal only should be used:

$$
\mathrm{C}_{\mathrm{m}}(\theta):=\frac{\mathrm{A}_{\mathrm{CuCh}}{ }^{\cdot} \gamma_{\mathrm{Cu}} \cdot \mathrm{C}_{\mathrm{Cu}}(\theta)+\mathrm{A}_{\mathrm{Cu}} \cdot \gamma_{\mathrm{Cu}} \cdot \mathrm{C}_{\mathrm{Cu}}(\theta)+\mathrm{A}_{\mathrm{NbTi}} \cdot \gamma_{\mathrm{NbTi}} \cdot \mathrm{C}_{\mathrm{NbTi}}(\theta)}{\mathrm{A}_{\mathrm{CuCh}}{ }^{\cdot} \gamma_{\mathrm{Cu}}+\mathrm{A}_{\mathrm{Cu}} \cdot \gamma_{\mathrm{Cu}}+\mathrm{A}_{\mathrm{NbTi}} \cdot \gamma_{\mathrm{NbTi}}+\mathrm{A}_{\mathrm{vo}} \cdot \gamma_{\mathrm{vo}}}
$$

$$
\mathrm{C}_{\mathrm{m}}\left(\theta_{\mathrm{s}}\right)=0.511 \cdot \mathrm{~J} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}
$$

and we have:

$$
\mathrm{V}_{\mathrm{zm}}:=\frac{\mathrm{J}_{0}}{\gamma_{\mathrm{av}} \cdot \mathrm{C}_{\mathrm{m}}\left(\theta_{\mathrm{s}}\right)} \cdot\left(\frac{\mathrm{L}_{0} \cdot \theta_{\mathrm{s}}}{\theta_{\mathrm{s}}-\theta_{0}}\right)^{\frac{1}{2}} \quad \mathrm{~V}_{\mathrm{zm}}=1.918 \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}
$$

Transverse Propagation

Thermal Conductivities

Use the conductivity at 4 K as representative of the range 1.8 K to 6.5 K scaled by the resistivity to account for magneto resistance.

Reference:J:\CLAS12 Magnet\Expe_Pers\Quench_RRG_PKG\Material data\Copper thermal conductivity_v11.xmcd
\rightarrow Reference:J:\CLAS12 Magnet\Expe_Pers\Quench_RRG_PKG\Material data\Epoxy Glass Thermal Conductivity.xmcd

$$
{ }^{\mathrm{k}_{\mathrm{Cu}}}\left(\theta_{0}, 50,3 \mathrm{~T}\right)=235.924 \cdot \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-1}
$$

Magneto resistance scaling factor with RRR.

$$
\begin{array}{ll}
\mathrm{Cu}_{\text {mag 100 }}:=\frac{\rho_{\mathrm{Cu}}\left(\theta_{\mathrm{s}}, 100\right)}{\rho_{\mathrm{Cu}}\left(\theta_{\mathrm{S}}, 100\right)+\Delta \rho_{\mathrm{Cu}}\left(\mathrm{~B}_{\text {max }}\right)} & \mathrm{Cu}_{\text {mag200 }}:=\frac{\rho_{\mathrm{Cu}}\left(\theta_{\mathrm{s}}, 120\right)}{\rho_{\mathrm{Cu}}\left(\theta_{\mathrm{S}}, 120\right)+\Delta \rho_{\mathrm{Cu}}\left(\mathrm{~B}_{\text {max }}\right)} \\
\mathrm{Cu}_{\text {mag100 }}=0.555 & \mathrm{Cu}_{\text {mag200 }}=0.509
\end{array}
$$

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{E} G \mathrm{Ca}}:=0.05 \cdot \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-1} \\
& \mathrm{k}_{\mathrm{NbTi}}:=1 \cdot \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-1} \\
& \mathrm{k}_{\mathrm{so}}:=1 \cdot \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-1}
\end{aligned}
$$

$$
\text { Thermal conductivity for } \mathrm{NbTi} \text { and Solder needs to }
$$

be verified!!!!

Longitudinal Conductivity with solder and epoxy

$\mathrm{k}_{\mathrm{z}}:=\frac{\mathrm{k}_{\mathrm{Cu}}\left(\theta_{\mathrm{s}}, 120, \mathrm{~B}\right) \cdot \mathrm{A}_{\mathrm{CuCh}} \cdot \mathrm{Cu}_{\text {mag2 } 200}+\mathrm{k}_{\mathrm{Cu}}\left(\theta_{\mathrm{s}}, 100, \mathrm{~B}\right) \cdot \mathrm{A}_{\mathrm{Cu}} \cdot \mathrm{Cu}_{\mathrm{mag} 100}+\mathrm{k}_{\mathrm{NbTi}} \cdot \mathrm{A}_{\mathrm{NbTi}}}{\mathrm{A}_{\mathrm{c}}-\mathrm{A}_{\mathrm{EG}}-\mathrm{A}_{\mathrm{vo}}}$
$\mathrm{k}_{\mathrm{Z}}=361.556 \cdot \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-1}$

Turn to Turn Conductivity

The conductivity across the conductor can be estimated as:
$\mathrm{k}_{\mathrm{c}}:=\frac{\mathrm{k}_{\mathrm{Cu}}\left(\theta_{\mathrm{s}}, 120, \mathrm{~B}\right) \cdot \mathrm{A}_{\mathrm{CuCh}} \cdot \mathrm{Cu}_{\text {mag200 }}+\mathrm{k}_{\mathrm{Cu}}\left(\theta_{\mathrm{s}}, 100, \mathrm{~B}\right) \cdot \mathrm{A}_{\mathrm{Cu}} \cdot \mathrm{Cu}_{\mathrm{mag} 100}+\mathrm{k}_{\mathrm{NbTi}} \cdot \mathrm{A}_{\mathrm{NbTi}}}{\mathrm{A}_{\mathrm{CuCh}}+\mathrm{A}_{\mathrm{Cu}}+\mathrm{A}_{\mathrm{NbTi}}+\mathrm{A}_{\mathrm{vo}}}$
$\mathrm{k}_{\mathrm{c}}=356.675 \cdot \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-1}$
$\mathrm{k}_{\mathrm{t}}:=\left(\frac{\mathrm{t}_{\mathrm{st}}}{\mathrm{k}_{\mathrm{c}}}+\frac{\mathrm{t}_{\mathrm{u}}-\mathrm{t}_{\mathrm{st}}}{\mathrm{k}_{\mathrm{EG}}}\right)^{-1} \cdot \mathrm{t}_{\mathrm{u}}$
$\mathrm{k}_{\mathrm{t}}=0.071 \cdot \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-1}$

Turn to Turn Quench Velocity

$\mathrm{v}_{\mathrm{tt}}:=\mathrm{V}_{\mathrm{z}}\left(\frac{\mathrm{k}_{\mathrm{t}}}{\mathrm{k}_{\mathrm{z}}}\right)^{\frac{1}{2}} \quad \mathrm{~V}_{\mathrm{tt}}=0.029 \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1} \quad\left(\frac{\mathrm{k}_{\mathrm{t}}}{\mathrm{k}_{\mathrm{z}}}\right)^{\frac{1}{2}}=0.014$

Layer to Layer Conductivity
$\mathrm{k}_{1}:=\left(\frac{\mathrm{w}_{\mathrm{st}}}{\mathrm{k}_{\mathrm{c}}}+\frac{\mathrm{w}_{\mathrm{u}}-\mathrm{w}_{\mathrm{st}}}{\mathrm{k}_{\mathrm{EG}}}\right)^{-1} \cdot \mathrm{w}_{\mathrm{u}} \quad \mathrm{k}_{1}=0.237 \cdot \mathrm{~W} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~K}^{-1}$

Layer to Layer Quench Velocity

$$
\mathrm{V}_{\mathrm{ll}}:=\mathrm{V}_{\mathrm{z}} \cdot\left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{\mathrm{z}}}\right)^{\frac{1}{2}} \quad \mathrm{~V}_{\mathrm{ll}}=0.054 \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}
$$

Propagation Times

Quenches are most likely to start on the coil bore where the magnetic field is highest. The time for the whole coil to become normal is then of the order of:

$$
\mathrm{T}_{\mathrm{z}}:=\frac{\mathrm{L}_{\mathrm{p}}}{2 \cdot \mathrm{~V}_{\mathrm{Z}}} \quad \mathrm{~T}_{\mathrm{z}}=1.656 \mathrm{~s} \quad \mathrm{~T}_{\mathrm{tt}}:=\frac{\mathrm{W}_{\mathrm{T}}}{2 \mathrm{~V}_{\mathrm{tt}}} \quad \mathrm{~T}_{\mathrm{tt}}=1.991 \mathrm{~s}
$$

$\mathrm{T}_{11}:=\frac{\mathrm{H}_{\mathrm{L}}}{\mathrm{V}_{11}} \quad \mathrm{~T}_{11}=3.245 \mathrm{~s}$
(assumes the quench starts at the centre of the coil bore)

Minimum Propogating Zone

The radius of the minimum propogating zone is given by equation 5.10 in Wilson.
$\lambda_{\mathrm{w}}:=\lambda_{\mathrm{NbTi}}+\lambda_{\mathrm{Cu}}+\lambda_{\mathrm{CuCh}}+\lambda_{\mathrm{vo}}$ (fraction of the winding occupied by the conductor)
$\lambda_{\mathrm{w}}=0.571 \quad \lambda_{\mathrm{sc}}:=\lambda_{\mathrm{NbTi}}$
$\mathrm{J}_{\text {Sac }}:=\frac{\mathrm{I}_{0}}{\mathrm{~A}_{\mathrm{NbTi}}} \quad \mathrm{J}_{\mathrm{Sc}}=1.134 \times 10^{3} \cdot \mathrm{~A} \cdot \mathrm{~mm}^{-2} \quad \mathrm{~J}_{\mathrm{w}}:=\frac{\mathrm{I}_{0}}{\mathrm{~A}_{\mathrm{c}}-\mathrm{A}_{\mathrm{EG}}} \quad \mathrm{J}_{\mathrm{w}}=36.906 \cdot \mathrm{~A} \cdot \mathrm{~mm}^{-2}$
$\rho_{\text {op }}:=\frac{\mathrm{A}_{\mathrm{CuCh}}+{ }^{\mathrm{A}} \mathrm{Cu}}{\frac{\mathrm{A}_{\mathrm{CuCh}}}{\rho_{\mathrm{CuB}}\left(\theta_{0}, 120\right)+\Delta \rho_{\mathrm{Cu}}\left(\mathrm{B}_{\text {max }}\right)}+\frac{{ }^{\mathrm{A}} \mathrm{Cu}}{\rho_{\mathrm{CuB}}\left(\theta_{0}, 100\right)+\Delta \rho_{\mathrm{Cu}}\left(\mathrm{B}_{\text {max }}\right)}}$
$\rho_{\mathrm{op}}=4.007 \times 10^{-10}$.ohm $\cdot \mathrm{m} \quad$ (resistivity at the operating temperature)
$\mathrm{G}_{\mathrm{c}}:=\frac{\rho_{\mathrm{op}} \cdot \lambda_{\mathrm{sc}}{ }^{2} \mathrm{~J}_{\mathrm{Sc}}{ }^{2}}{1-\lambda_{\mathrm{sc}}} \quad \mathrm{G}_{\mathrm{c}}=1.811 \times 10^{5} \cdot \mathrm{~W} \cdot \mathrm{~m}^{-3} \quad$ (critical heat generation rate)

Radius of MPZ is given by equation 5.10 from MW's book

MPZ $:=\pi \cdot\left[\frac{k_{z} \cdot\left(\theta_{\mathrm{c}}-\theta_{\mathrm{g}}\right)}{\lambda_{\mathrm{w}} \cdot \mathrm{G}_{\mathrm{c}}}\right]^{\frac{1}{2}}$

$$
\mathrm{MPZ}=275.089 \cdot \mathrm{~mm}
$$

Martin Wilson uses a different formula (Difficult to understand from where he take this formula) to calculate X_{g} (radius of MPZ), also instead of longitudianl thermal conductivity in his calculations he takes only copper thermal conductivity. Calculations for X_{g} from other Martin Wilson report shows slightly different values that is calculated here .

$$
\mathrm{MPZ}_{\mathrm{mw}}:=\left[\frac{2 \mathrm{k}_{\mathrm{z}} \cdot\left(\theta_{\mathrm{c}}-\theta_{\mathrm{g}}\right)}{\mathrm{G}_{\mathrm{c}}}\right]^{\frac{1}{2}} \quad \mathrm{MPZ}_{\mathrm{mw}}=93.541 \cdot \mathrm{~mm}
$$

Thermal conductivity over copper section from MW's

$\mathrm{k}_{\mathrm{cu}}:=\frac{\mathrm{L}_{0}}{\rho_{\mathrm{cBw}}}=0.085 \frac{1}{\mathrm{~mm} \cdot \mathrm{~K}^{2}} \cdot \mathrm{~W}$
$\mathrm{X}_{\mathrm{g}}:=\sqrt{2 \cdot \mathrm{k}_{\operatorname{con}} \cdot \theta_{\mathrm{s}} \cdot \frac{\left(\theta_{\mathrm{c}}-\theta_{\mathrm{g}}\right)}{\mathrm{G}_{\mathrm{c}}}}$
$\beta:=\frac{\theta_{\mathrm{g}}-\theta_{0}}{\theta_{0}} \quad \beta=0.29 \quad a:=1.1,1.2 . .4 .3$
$\nu(\mathrm{a}):=\frac{\pi \cdot(1+\beta) \cdot(\mathrm{a}-1)}{\beta \cdot \mathrm{a}}$
Equation 5.22 Wilson
$\mathrm{e}_{\mathrm{g}}(\mathrm{a}):=\left[\frac{\mathrm{a} \cdot \beta}{\pi \cdot(\mathrm{a}-1)}\right]^{4} \cdot\left(\nu(\mathrm{a})^{4}+3.8 \cdot \nu(\mathrm{a})^{3}+9 \cdot \nu(\mathrm{a})^{2}+11.6 \cdot \nu(\mathrm{a})+6.3\right)-1$
a is same as " m " in MW's book

Equation 5.21 Wilson
$\eta(\mathrm{a}):=\frac{\mathrm{a}-1-\beta}{} \quad$ Equation 5.25 Wilson, This equation has a typo in the book, checked with MW on March 9th 2013.
$e_{h}(a):=\left(\frac{a \cdot \beta}{a-1}\right)^{4} \cdot\left[\left(3-\frac{3}{a}\right)+12 \cdot \eta(a) \cdot \ln (a)+18 \cdot \eta(a)^{2} \cdot(a-1)+6 \cdot \eta(a)^{3} \cdot\left(a^{2}-1\right)+\eta(a)^{4} \cdot\left(a^{3}-1\right)\right]-\left(a^{3}-1\right)$
Equation 5.24 Wilson
$e_{t}(a):=e_{g}(a)+e_{h}(a)$

The energy iput needed to establish a propagating zone is $\mathrm{e}_{\mathrm{t}}=\mathrm{e}_{\mathrm{h}}+\mathrm{e}_{\mathrm{g}}$, the outstanding variable is "a". For a fixed value of B the energy e_{t} passes through a broad minimum with repsect to "a". We take the minimum value of e_{t} as the best estimate of "a".
Guess a value of "a" for minimum value of e_{t}

$$
\mathrm{a}:=2.5
$$

$$
\text { Given } \quad a>1 \quad a_{\text {min }}:=\operatorname{Minimize}\left(e_{t}, a\right)=1.713
$$

Estimate specific enthalpies from specific heat capacities:

$$
\gamma \mathrm{H}_{\mathrm{Cu}}:=\left(\frac{\mathrm{L}_{\mathrm{Cu}} \cdot \theta_{0}^{4}}{4}+\frac{\gamma_{\mathrm{Cue}} \cdot_{0}{ }^{2}}{2}\right) \cdot \gamma_{\mathrm{Cu}} \quad \quad \gamma \mathrm{H}_{\mathrm{Cu}}=2.297 \times 10^{3} \cdot \mathrm{~J} \cdot \mathrm{~m}^{-3}
$$

$$
\begin{aligned}
& \gamma \mathrm{H}_{\mathrm{NbTi}}:=4.5 \cdot 10^{3} \cdot \mathrm{~J} \cdot \mathrm{~m}^{-3} \cdot\left(\frac{\theta_{0}}{4 \cdot \mathrm{~K}}\right)^{4} \\
& \gamma \mathrm{H}_{\mathrm{ins}}:=\left(\frac{\mathrm{L}_{\mathrm{eg}} \cdot \theta_{0}^{4}}{4}\right) \cdot \gamma_{\mathrm{EG}} \\
& \gamma \mathrm{H}_{0}:=\lambda_{\mathrm{cu}} \cdot \gamma \mathrm{H}_{\mathrm{Cu}}+\lambda_{\mathrm{NbTi}} \cdot \gamma \mathrm{H}_{\mathrm{NbTi}}+\lambda_{\mathrm{ins}} \cdot \gamma \mathrm{H}_{\mathrm{ins}} \\
& \alpha:=\sqrt{\frac{\mathrm{v}_{\mathrm{ll}} \mathrm{~V}_{\mathrm{tt}}}{\mathrm{v}_{\mathrm{z}}^{2}}} \\
& \mathrm{R}_{\mathrm{g}}:=\mathrm{MPZ} \quad \mathrm{E}_{0}:=\frac{4 \cdot \pi}{3} \cdot \alpha^{2} \cdot \mathrm{R}_{\mathrm{g}}{ }^{3} \cdot \gamma \mathrm{H}_{0} \\
& \mathrm{E}_{0}=0.045 \cdot \mathrm{~J} \quad 1.7 \text { is the value of "a" for minimum } \mathrm{e}_{\mathrm{t}} \\
& \mathrm{E}_{\text {tot }}:=\mathrm{e}_{\mathrm{g}}\left(\mathrm{a}_{\mathrm{min}}\right) \cdot \mathrm{E}_{0} \\
& \mathrm{E}_{\text {tot }}=0.202 \cdot \mathrm{~J} \\
& \gamma \mathrm{H}_{\mathrm{NbTi}}=7.891 \times 10^{3} \cdot \mathrm{~J} \cdot \mathrm{~m}^{-3} \\
& \gamma \mathrm{H}_{\text {ins }}=99.969 \cdot \mathrm{~J} \cdot \mathrm{~m}^{-3} \\
& \gamma \mathrm{H}_{0}=1.44 \times 10^{3} \cdot \mathrm{~J} \cdot \mathrm{~m}^{-3} \\
& \alpha=0.019 \\
& \text { energy required } \mathrm{E}_{\text {tot }} \text { to heat up the } \\
& \text { generation region MPZ } \\
& \text { Energy density: } \quad \mathrm{e}_{\text {tot }}:=\frac{\mathrm{E}_{\text {tot }}}{\alpha \cdot \mathrm{MPZ}^{2}} \quad \mathrm{e}_{\text {tot }}=1.41 \times 10^{-4} \cdot \mathrm{~J} \cdot \mathrm{~mm}^{-2}
\end{aligned}
$$

This energy may be unrealistic if the width of the MPZ is less than the conductor width as in practice it is likely that the whole conductor cross section would be at the same temperature. We can address this either by calculating the energy required to send a MPZ length of conductor normal or by calculating the length of conductor giving a volume equal to the MPZ:

$$
\begin{array}{ll}
\mathrm{E}_{\mathrm{MPZ}}:=\mathrm{e}_{\mathrm{g}}\left(\mathrm{a}_{\min }\right) \cdot \mathrm{A}_{\mathrm{c}} \cdot \mathrm{R}_{\mathrm{g}} \cdot \gamma \mathrm{H}_{0} & \mathrm{E}_{\mathrm{MPZ}}=0.127 \cdot \mathrm{~J} \\
\mathrm{~L}_{\mathrm{MPZ}}:=\frac{\frac{4 \cdot \pi}{3} \cdot \alpha^{2} \cdot \mathrm{R}_{\mathrm{g}}^{3}}{\mathrm{~A}_{\mathrm{c}}} & \mathrm{~L}_{\mathrm{MPZ}}=439.537 \cdot \mathrm{~mm}
\end{array}
$$

Estimate the amount of movement required from a length of wire equal to the MPZ in order to cause a quench:
$\frac{\mathrm{E}_{\text {tot }}}{\mathrm{B}_{\text {max }} \cdot \mathrm{I}_{0} \cdot \mathrm{MPZ}}=0.165 \cdot \mathrm{~mm}$
or:

$$
\frac{\mathrm{E}_{\mathrm{MPZ}}}{\mathrm{~B}_{\max } \cdot \mathrm{I}_{0} \cdot \mathrm{MPZ}}=0.103 \mathrm{~mm}
$$

Peak Temperature

Guess a peak temperature:

adjust until the estimated temperature
agrees at $\theta_{\text {maxest }}$
$\mathrm{T}_{\mathrm{Q}}:=\left(\frac{90 \cdot \mathrm{~L}_{\text {tot }} \cdot \mathrm{U}\left(\theta_{\mathrm{p}}\right)^{2} \cdot \mathrm{~A}_{\mathrm{c}}{ }^{2}}{4 \cdot \pi \cdot \mathrm{~J}_{0} \cdot \rho_{\mathrm{av}}\left(\theta_{\mathrm{p}}\right) \cdot \alpha^{2} \cdot \mathrm{~V}_{\mathrm{z}}{ }^{3}}\right)^{\frac{1}{6}} \quad \mathrm{~T}_{\mathrm{Q}}=24.782 \mathrm{~s}$
Actual peak temperatures can be calculated from:
$\theta_{\text {maxest }}:=\frac{\mathrm{J}_{0}{ }^{4} \cdot \mathrm{~T}_{\mathrm{Q}}{ }^{2} \cdot \theta_{\mathrm{p}}}{\mathrm{U}\left(\theta_{\mathrm{p}}\right)^{2}}$
$\theta_{\text {maxest }}=44.894 \cdot \mathrm{~K}$

Boundary Effects

Boundary effects are likely to be important as the normal zone stops expanding when boundaries are reached, hence the decay time is prolonged. Boundary encounter times are:
$\mathrm{T}_{\mathrm{Z}}=1.656 \mathrm{~s}$
$\mathrm{T}_{\mathrm{tt}}=1.991 \mathrm{~s}$
$\mathrm{T}_{1 \mathrm{l}}=3.245 \mathrm{~s}$

Guess a peak temperature:
$\theta_{\mathrm{p} 3 \mathrm{~d}}:=182.4 \mathrm{~K}$

> adjust until the estimated temperature agrees
> with $\theta_{\max }$

$$
\mathrm{T}_{\mathrm{Q} 3 \mathrm{~d}}:=\left(\frac{90 \cdot \mathrm{~L}_{\mathrm{tot}} \cdot \mathrm{U}\left(\theta_{\mathrm{p} 3 \mathrm{~d}}\right)^{2} \cdot \mathrm{~A}_{\mathrm{c}}^{2}}{4 \cdot \pi \cdot \mathrm{~J}_{0}^{4} \cdot \rho_{\mathrm{av}}\left(\theta_{\mathrm{p} 3 \mathrm{~d}}\right) \cdot \alpha^{2} \cdot \mathrm{~V}_{\mathrm{z}}^{3}}\right)^{\frac{1}{6}} \quad \mathrm{~T}_{\mathrm{Q} 3 \mathrm{~d}}=29.237 \mathrm{~s}
$$

Taking into account boundary encounters we can calculate a dimensionless decay time:

$$
t_{d 1}:=\left(3 \cdot \frac{T_{\mathrm{z}}}{T_{\mathrm{Q} 3 \mathrm{~d}}}\right)^{\frac{-1}{5}} \quad \mathrm{t}_{\mathrm{d} 2}:=\left(\frac{15}{2} \cdot \frac{\mathrm{~T}_{\mathrm{Z}}}{\mathrm{~T}_{\mathrm{Q} 3 \mathrm{~d}}} \cdot \frac{\mathrm{~T}_{\mathrm{tt}}}{\mathrm{~T}_{\mathrm{Q} 3 \mathrm{~d}}}\right)^{\frac{-1}{4}} \quad \mathrm{t}_{\mathrm{d} 3}:=\left(20 \cdot \frac{\mathrm{~T}_{\mathrm{Z}}}{\mathrm{~T}_{\mathrm{Q} 3 \mathrm{~d}}} \cdot \frac{\mathrm{~T}_{\mathrm{tt}}}{\mathrm{~T}_{\mathrm{Q} 3 \mathrm{~d}}} \cdot \frac{\mathrm{~T}_{\mathrm{ll}}}{\mathrm{~T}_{\mathrm{Q} 3 \mathrm{~d}}}\right)^{\frac{-1}{3}}
$$

(note td1 \& td2 may have different arguments depending on the relative times)
$\mathrm{t}_{\mathrm{d}}:=\mathrm{t}_{\mathrm{d} 3} \quad$ as appropriate.
$\mathrm{t}_{\mathrm{d}}=4.888 \quad \mathrm{t}_{\mathrm{d}} \cdot \mathrm{T}_{\mathrm{Q} 3 \mathrm{~d}}=142.911 \mathrm{~s}$
The peak temperature is now:

$$
\theta_{\max }:=\frac{\mathrm{J}_{0}^{4} \cdot \mathrm{t}_{\mathrm{d}}{ }^{2} \cdot \mathrm{~T}_{\mathrm{Q} 3 \mathrm{~d}}{ }^{2} \cdot \theta_{\mathrm{p} 3 \mathrm{~d}}}{\mathrm{U}\left(\theta_{\mathrm{p} 3 \mathrm{~d}}\right)^{2}}
$$

Peak internal voltage:

$$
\begin{aligned}
& \mathrm{V}_{\max }:=\frac{2.5 \cdot \mathrm{~L}_{\text {tot }} \cdot \mathrm{I}_{0}}{\mathrm{~T}_{\mathrm{Q} 3 \mathrm{~d}}} \cdot\left(\frac{\mathrm{~T}_{\mathrm{z}}}{\mathrm{~T}_{\mathrm{Q} 3 \mathrm{~d}}} \cdot \frac{\mathrm{~T}_{\mathrm{tt}}}{\mathrm{~T}_{\mathrm{Q} 3 \mathrm{~d}}} \cdot \frac{\mathrm{~T}_{1 \mathrm{l}}}{\mathrm{~T}_{\mathrm{Q} 3 \mathrm{~d}}}\right)^{\frac{1}{3}} \\
& \mathrm{~L}_{\text {tot }} \cdot \frac{\mathrm{I}_{0}}{\mathrm{t}_{\mathrm{d}} \cdot \mathrm{~T}_{\mathrm{Q} 3 \mathrm{~d}}}=301.341 \mathrm{~V}
\end{aligned}
$$

$\mathrm{V}_{\text {tot }}:=\mathrm{L}_{\text {tot }} \frac{\mathrm{I}_{0}}{\mathrm{t}_{\mathrm{d}} \cdot \mathrm{T}_{\mathrm{Q} 3 \mathrm{~d}}}$
$\mathrm{V}_{\text {tot }}=301.341 \mathrm{~V}$
$\mathrm{dV}:=\mathrm{V}_{\text {tot }}-\mathrm{V}_{\text {max }}$
$\mathrm{dV}=23.804 \mathrm{~V}$

Mean Temperature

Coil mass: $\quad \mathrm{M}_{1}:=\mathrm{H}_{\mathrm{L}} \cdot \mathrm{W}_{\mathrm{T}} \cdot \mathrm{L}_{\mathrm{p}} \cdot \gamma_{\mathrm{av}} \quad \mathrm{M}_{1}=809.73 \mathrm{~kg}$
Mean temperature assuming the coil absorbs the stored energy evenly:
$\theta_{\mathrm{m}}:=4.4 \cdot \mathrm{~K}, 14.4 \cdot \mathrm{~K} . .300 \cdot \mathrm{~K}$

$$
\theta_{\text {mean }}:=80 \cdot \mathrm{~K} \quad \theta_{0}=4.603 \mathrm{~K}
$$

Given

$$
\begin{array}{ll}
\mathrm{E}_{\mathrm{st}}=\int_{\theta_{0}}^{\theta_{\text {mean }}} \mathrm{M}_{1} \cdot \mathrm{C}_{\mathrm{av}}(\theta) \mathrm{d} \theta & \mathrm{E}_{\mathrm{st}}=3.23 \times 10^{7} \mathrm{~J} \\
\theta_{\text {meanerr }}:=\operatorname{Minerr}\left(\theta_{\text {mean }}\right) & \theta_{\text {meanerr }}=173.048 \mathrm{~K}
\end{array}
$$

In the time for the quench to fill the whole coil, what is the temperature rise at the initiation point?

$$
\Delta \theta:=80 \cdot \mathrm{~K}
$$

Given

$$
\mathrm{T}_{1 \mathrm{I}} \mathrm{~J}_{0}^{2}=\mathrm{U}(\Delta \theta)
$$

$$
\Delta \theta_{\mathrm{err}}:=\operatorname{Minerr}(\Delta \theta) \quad \Delta \theta_{\mathrm{err}}=23.747 \mathrm{~K}
$$

Coil resistance: $\quad \mathrm{R}_{\text {coil }}:=\frac{\rho_{\text {av }}\left(\Delta \theta_{\text {err }}\right)}{\mathrm{A}_{\mathrm{Cu}}+\mathrm{A}_{\mathrm{NbTi}}} \cdot \mathrm{L}_{\mathrm{p}} \cdot \mathrm{N}_{\mathrm{T}} \cdot \mathrm{N}_{\mathrm{L}} \quad \quad \mathrm{R}_{\text {coil }}=0.118 \Omega$
Coil voltage: $\quad \mathrm{R}_{\text {coil }} \cdot \mathrm{I}_{0}=177.228 \mathrm{~V}$

