$\Upsilon p \rightarrow \pi^{+} \pi^{+} \pi^{-} n$ Part II

JAKE BENNETT

INDIANA UNIVERSITY

Generate two sets of data

5000 signal events

Pass through hdgeant and mcsmear

Use signal to calculate efficiency

Use pythia data to reduce background

Reconstructed Data

Require at least 2 positively charged tracks and 1 negatively charged track (net charge +1)

GlueX Physics Working Group Meeting - October 11, 2010

	- FOUND
	pippip
	pitpi-piop
	K+K-pi+n
FOM $=$ sig/sqrt(sig+bkg)	pitpi-piopiop

FOM $=$ sig/sqrt(sig+bkg)
pi+pi-piOpiOp

Figure of Merit for Missing Mass

Figure of Merit for Missing Mass

GlueX Physics Working Group Meeting - October 11, 2010

GlueX Physics Working Group Meeting - October 11, 2010

GlueX Physics Working Group Meeting - October 11, 2010
FOUND
All cuts

sig:bkg $=330: 630$

Cut	Sig Efficiency	FOM
Initial	0.77	2.105
3 Tracks only	0.68	4.368
Missing mass	0.54	6.815
Pion Pt	0.37	9.730
Calorimeter energy	0.32	13.15

FOM = sig/sqrt(sig+bkg)

Work in Progress

Kinematic fit to $\pi^{+} \pi^{-} p$ and use x^{2} as a cut
Doesn't turn out to be very useful
PID should improve signal FOM
Any improvement on this?
Investigate low signal efficiency
Looks a little better... Why?

