Ongoing Hadron Spectroscopy with CLAS(6) and CLAS12

Derek Glazer On behalf of the CLAS Hadron Spectroscopy Working Group

Overview

- CLAS experiment provided many high quality publications on spectroscopy
- Data with real photon and electron beams
- Many analysis still ongoing
- Wide variety of physics topics covered
- First run period for CLAS12 on hydrogen target completed
- Data reconstruction progressing, approaching physics level data quality

Baryon Spectroscopy with CLAS6

First results on N* photocouplings from $\pi + \pi - p$

- In 2019 partial update of the Review of Particle Physics the entries on photocouplings, π∆ and ρp decay widths for many resonances with masses >1.6 GeV were revised based on the studies of π⁺π⁻p photoproduction with CLAS
- The global multi-channel analyses of exclusive meson photoproduction which employ the amplitudes from the independent studies of the Nπ, Nη, ππN, ωp, and KY channels will gain insight to the N* spectrum, in particular, in establishing the new state of baryon matter.

Establishing the N* Spectrum from CLAS KY data

Hyperon photoproduction $\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$ from CLAS

Bonn-Gatchina multichannel analysis: 9 new resonances were included

Establishing the N* Spectrun from CLAS KY data

W (GeV)

Advances in the exploration of the N* Spectrum

Several new nucleon resonances (``missing" states) have been discovered with the decisive impact of the CLAS open strangeness photoproduction data. A.V. Anisovich et al., Phys. Lett. B782, 662(2018), V.D. Burkert, Few Body Syst. 59, 57 (2018).

Data Group (PDG) tables					
State N(mass)J [⊵]	PDG pre 2016	PDG 2018*			
N(1710)1/2⁺	***	****			
N(1880)1/2+		***			
N(1895)1/2 ⁻		****			
N(1900)3/2+	**	****			
N(1875)3/2-		***			
N(2100)1/2+	*	***			
N(2120)3/2 ⁻		***			
N(2000)5/2+	*	**			
N(2060)5/2 ⁻		***			
∆(1600)3/2 ⁺	***	****			
∆ (1900)1/2 [.]	**	***			
A(2200)7/2-	*	***			

Nucleon resonances listed in Particle

1/2* 3/2* 5/2* 7/2* 9/2* 1/2* 3/2* 5/2* 7/2* 9/2* 1/2* 3/2* 5/2* 7/2* 9/2* 1/2* 3/2* 5/2* 7/2* 9/2*

<u>The next step:</u> A description of the exclusive electroproduction data off the proton with the same masses and hadronic decay widths as in photoproduction will support the existence of new baryon states.

<u>The request for theory support</u>: Extension of the amplitude analysis approaches, which was successfully employed for the extraction of the N* photocouplings, towards the photon virtualities Q²>0. for the extraction of the N* electrocouplings from exclusive meson electroproduction data represents the most important avenue for the theory support of the N* spectrum/structure studies with the CLAS and CLAS12.

Kaon photoproduction and Fierz indentities

Helicity space maps on Clifford algebra > Fierz identities:

Chiang, Tabakin (1997

$$\Sigma P - C_x O_z + C_z O_x - T = 0 \& O_x^2 + O_z^2 + C_x^2 + C_z^2 + \Sigma^2 - T^2 + P^2 = 1$$

Evidence for the Existence of the New State N'(1720)3/2⁺ from Combined $\pi^+\pi^-p$ Analyses in both Photo- and Electroproduction

W=1.71 GeV , Q²=0. GeV²

<u>Photoproduction:</u> 1.66 GeV<W<1.76 GeV 1.19 < χ²/d.p. < 1.28

E.N. Golovatch et al, CLAS Collaboration, Phys. Lett.B788, 371 (2019). N(1720)3/2⁺ hadronic decays from the CLAS data fit with conventional resonances only

	BF(πΔ), %	BF(ρ p), %
electroproduction	64-100	<5
photoproduction	14-60	19-69

The contradictory BF values for N(1720)3/2⁺ decays to the $\pi\Delta$ and ρp final states deduced from photo- and electroproduction data make it impossible to describe the data with conventional states only.

Resonance	BF(πΔ), %	BF(ρ p), %
N'(1720)3/2⁺ electroproduction photoproduction	47-64 46-62	3-10 4-13
N(1720)3/2 ⁺ electroproduction photoproduction	39-55 38-53	23-49 31-46

The successful description of the $\pi^+\pi^-p$ photoand electroproduction data achieved by implementing new N'(1720)3/2⁺ state with Q²-independent hadronic decay widths of all resonances contributing at W~1.7 GeV provides strong evidence for the existence of the new N'(1720)3/2[±] state.

Electroproduction: 1.66 GeV<W<1.76 GeV 0.5 GeV²<Q²<1.5 GeV² 2.56 < χ^2 /d.p. < 2.80 (stat. uncertainties only)

M. Ripani et al., CLAS Collaboration Phys. Rev. Lett. 91, 022002 (2003).

The Parameters of the N'(1720)3/2+ /N(1720)3/2+ States from the CLAS Data Fit

• N'(1720)3/2⁺ is the only new resonance for which data on electroexcitation amplitudes have become available.

• Gaining insight into the ``missing" resonance structure will shed light on their peculiar structural features that have made them so elusive, as well as on the emergence of new resonances from QCD.

Meson Production with CLAS6

Cross Sections for $K^0\Sigma^+ \rightarrow p\pi^+\pi^-\pi^0$

Z. Akbar et al. [CLAS Collaboration], in preparation.

Counts

25

 K_S

450

500

m ... [MeV/c2]

Cross Sections for $K^0\Sigma^+ \rightarrow p\pi^+\pi^-\pi^0$

Z. Akbar et al. [CLAS Collaboration], in preparation.

→ Currently being analyzed for $K^0 \Sigma^+$: $E, P, C_x, C_z \& \Sigma, O_x, O_z$

(Complete measurements) in ω photoproduction

 Event-based background subtraction (event-based dilution factors)

$$\rightarrow \quad \gamma p \rightarrow p \, \pi^+ \pi^- \checkmark \qquad \gamma p \rightarrow p \, \pi^+ \pi^-(\pi^0) \checkmark$$

In analogy to pseudoscalar mesons:

 $\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega} = \sigma_0 \left\{ 1 - \delta_1 \sum \cos 2\phi + \lambda_x \left(-\delta_1 H \sin 2\phi + \delta_\odot F \right) \right.$ published (+ SDME's) $- \Lambda_y \left(-T + \delta_1 P \cos 2\phi \right) - \lambda_z \left(-\delta_1 G \sin 2\phi + \delta_\odot E \right) \right\}$

 $\phi = \Psi \equiv$ Angle between $p\omega$ production plane and the photon polarization plane in the overall CM frame.

 $\Phi \equiv$ Azimuthal angle of normal to the ω decay plane in helicity frame - quantization axis in the direction opposite the recoiling proton in the ω rest frame.

The ω is a vector meson (A. I. Titov and B. Kampfer, Phys. Rev. C 78, 038201 (2008))

$$2\pi W^{f}(\Phi,\Psi) = 1 - \Sigma^{f}_{\Phi} \cos 2\Phi - P_{\gamma} \Sigma^{f}_{b} \cos 2\Psi + P_{\gamma} \Sigma^{f}_{d} \cos 2(\Phi - \Psi)$$

$$\Sigma_b^h = \Sigma_b^r = 2\rho_{11}^1 + \rho_{00}^1 \qquad -\frac{1}{2}\Sigma_d^h = \Sigma_d^r = \rho_{1-1}^1 \qquad -\frac{1}{2}\Sigma_{\Phi}^h = \Sigma_{\Phi}^r = -\rho_{1-1}^0$$

Pol. SDMEs: B. Vernarsky (CMU), PhD dissertation

Helicity Asymmetry in $\vec{\gamma} \vec{p} \rightarrow p \omega$

Z. Akbar et al. [CLAS Collaboration], PRC 96, 065209 (2017)

BnGa (coupled-channels) PWA

- Dominant **P** exchange
- Complex 3/2⁺ wave

1 N(1720)

2 W ≈ 1.9 GeV

- N(1895) 1/2⁻ (new state)
- N(1680), N(2000) 5/2⁺
- 7/2 wave > 2.1 GeV

CLAS-g9a

CBELSA/TAPS
 Phys. Lett. B 750, 453 (2015)

Cross Sections for $\gamma \, p \, \rightarrow \, p \, \omega$

New cross section results in 10-MeV-wide *W* bins for $1.15 < E_{\gamma} < 5.40$ GeV, or 1.75 < W < 3.32 GeV

→ Need theory support to understand physics at these high energies!! Working with JPAC. (V. Mathieu *et al.*)

→ Data of unprecedented quality

Z. Akbar et al. [CLAS Collaboration], in preparation + SDMEs

Cross Sections for $\gamma \, p \, \rightarrow \, p \, \eta$

T. Hu et al. [CLAS Collaboration], manuscript prepared for PRC, under review.

Search for Hybrid Mesons yp $\rightarrow n \pi^+\pi^+\pi^-$

A. Tsaris et al. [CLAS Collaboration], manuscript prepared for PRL, under review.

Two Pion production and the $f_0(980)$

Extract moments of spherical harmonics From 2π decay angular distributions In bins of 2π mass

Measurement of Direct $f_0(980)$ Photoproduction on the Proton

M. Battaglieri et al. (CLAS Collaboration) Phys. Rev. Lett. **102**, 102001 – Published 11 March 2009 Fit moments with mass dependent partial wave amplitudes

Two Pion production and the $f_0(980)$

Two Kaon production and the $f_0(980)$

CLAS g12 : Dalitz Plot Analysis for Light Mesons

example: $\eta \rightarrow \pi^+ \pi^- \pi^0$

decay width gives access to quark mass ratio; study via BR or Dalitz plot analysis

parametrization of decay width:

Dimensionless Dalitz Plot Variables:

$$X = \sqrt{3} \frac{T_{\pi^+} - T_{\pi^-}}{T_{\pi^+} + T_{\pi^-} + T_{\pi^0}}$$
$$Y = 3 \frac{T_{\pi^0}}{T_{\pi^+} + T_{\pi^-} + T_{\pi^0}} - 1$$

 $\frac{d^2\Gamma}{dXdY} \propto \left(1 + aY + bY^2 + cX + dX^2 + eXY + fY^3 + gX^2Y + \ldots\right)$

	Parameter:	— a	b	d	f
Exp.	KLOE (08) ^(a)	1.090(5)(⁺⁸ 9)	0.124(6)(10)	0.057(6)(+7 -16)	0.14(1)(2)
	WASA ^(d)	1.144(18)	0.219(19)(47)	0.086(18)(15)	0.115(37)
	KLOE (16) ^(f)	1.104(3)(2)	$0.142(3)(^{5}_{-4})$	0.073(3)(+4)	0.154(6)(+4)
Theor.	ChPT (NNLO) ^(b)	1.271(75)	0.394(102)	0.055(57)	0.025(160)
	NREFT ^(c)	1.213(14)	0.308(23)	0.050(3)	0.083(19)
	PWA ^(e)	1.116(32)	0.188(12)	0.063(4)	0.091(3)
	PWA ^(g)	1.077(29)	0.170(8)	0.060(2)	0.091(3)
(a) Kl	OE coll., JHEP, 05, (200	08)	(b) J. Bijnens	and K. Ghorbani., JI	HEP, 11, (2007)

(c) S- P. Schneider et al., JHEP, 028, (2011)

(e) Peng Guo et al., Phys. Rev., D92(05016), (2015)

(g) Peng Guo et al., arXiv: 1608.01447v3, (2017)

(b) J. Bijnens and K. Ghorbani., JHEP, 11, (2007)
(d) WASA-at-COSY coll., Phys. Rev., C90(045207), 2014
(f) KLOE coll., JHEP, 019, (2016)

c ≠ 0 and e ≠ 0:
i) imply C-violation
ii) cause asymmetries within the Dalitz Plot

WASA-at-COSY: $Q = 21.4 \pm 1.1(e)$ KLOE: $Q = 21.7 \pm 1.1(g)$

Dalitz Plot Analysis for $\eta \rightarrow \pi^+ \pi^- \pi^0$ with the CLAS G12 data set

CLAS g12 : Preliminary Analysis of $\eta \to \ \pi^+\pi^-\pi^0$

Parameter	-a	b	с	d	f
KLOE(08)	1.090(5)(+8 _ 19)	0.124(6)(10)	0.0	0.057(6)(+ 7 _ 16)	0.14(1)(2)
WASA	1.144(18)	0.219(19)(47)	0.0	0.086(18)(15)	0.115(37)
KLOE(16)	1.104(5)(2)	0.142(3)(+5 _4)	0.0	0.073(3)(+ 4 _ 3)	0.154(6)(+4 _5)
G12	1.102(20)(13)	0.127(18)(5)	0.011(7)(7)	0.106(19)(5)	0.248(45)(10)

- Parameter e is 0
- Dalitz Plot Asymmetry $A = \frac{N^+ N^-}{N^+ + N^-} = (0.9 \pm 2.9) \cdot 10^{-3}$
- Systematic uncertainties determined via random walk analysis

Reactions of Hadrons with Virtual Photons

 $\frac{d\Gamma(A \to B + l^+ l^-)}{dq^2 \Gamma(A \to B\gamma)} = \left[\frac{d\Gamma}{dq^2}\right]_{\rm OED} \cdot \left|F(q^2)\right|^2$ intrinsic structure of hadrons $F_{AB} (q^2)$ $F(q^2) = \frac{1}{1 - q^2/\Lambda^2}$ transition form factors • validity of vector meson dominance • $q^2 = m^2_{l^+l^-} > 0$ background for physics beyond the standard model $e^{-}(p)$ rare decays eq $\pi \rightarrow ee$ g-2 anomalous magnetic moment of the muon light-by-light scattering g-2 measurements: Fermilab and J-PARC

CLAS g12 : Preliminary ω - π^0 transition form factor

preliminary analysis: consistent with A2 result (and 'extended' VMD)?

C. Terschlüsen and S. Leupold, Phys. Lett. B 691, 191 (2010) VMD+contact term

CLAS12 will extend to η^{t} transistion form factors

N* Spectroscopy with CLAS12 Hybrid Baryons

CLAS12 N* program – Meson Electroproduction

The N^{*} program is one of the key physics foundations of Hall B

•CLAS12 was designed to measure cross sections and spin observables over a broad kinematic range for exclusive reaction channels:

πN, ωN, φN, ηN, η[']N, ππN, KY, K^{*}Y, KY^{*}

- N* parameters do not depend on how they decay
- Different final states have different hadronic decay parameters and different backgrounds
- Agreement offers model-independent support for findings
- The program goal is to probe the *spectrum* of N* states and their *structure*
 - Probe the underlying degrees of freedom of the nucleon through studies of the Q² evolution of the production amplitudes

N* degrees of freedom??

CLAS N* - Structure Studies

- Electrocouplings reveal different interplay between quark core and meson cloud -Important to study different N* states vs. distance scale
- Good agreement of the extracted N* electrocouplings from Nп and Nпп
 - -Compelling evidence for the reliability of the results
 - -Channels have very different mechanisms for the non-resonant background

Precision studies of N* structure are a key part of the CLAS12 experimental program

Hybrid hadrons with dominant gluonic contributions are predicted to exist by QCD. **Experimentally:**

- Hybrid mesons |qqg> states may have exotic quantum numbers J^{PC} not available to pure |qq> states → 0⁻⁻, 1⁻⁺, 1⁻⁻,GlueX, MesonEx, COMPASS, PANDA
- Hybrid baryons |qqqg> have the same quantum numbers J^P as |qqq>
 electroproduction with CLAS12 (Hall B).

Theoretical predictions:

MIT bag model - T. Barnes and F. Close, Phys. Lett. 123B, 89 (1983).
 QCD Sum Rule - L. Kisslinger and Z. Li, Phys. Rev. D 51, R5986 (1995).
 Flux Tube model - S. Capstick and P. R. Page, Phys. Rev. C 66, 065204 (2002).

LQCD - J.J. Dudek and R.G. Edwards, PRD85, 054016 (2012).

Hybrid Baryons in LQCD

Hybrid states have same J^P values as qqq baryons. How to identify them?
Overpopulation of N 1/2⁺ and N 3/2⁺ states compared to QM projections.
A_{1/2} (A_{3/2}) and S_{1/2} show different Q² evolution. Can we do it?

Separating q³g from q³ States?

- $A_{1/2}$ and $S_{1/2}$ amplitudes at high Q² >2 GeV² indicate 1st radial q³ excitation
- Significant meson-baryon coupling at small Q²

For hybrid "Roper", $A_{1/2}(Q^2)$ drops off faster with Q^2 and $S_{1/2}(Q^2) \sim 0$.

Based on available knowledge, the *signatures* for hybrid baryons consist of:

• Extra resonances with $J^p=1/2^+$ and $J^p=3/2^+$, with masses > 1.8 GeV and decays into N $\pi\pi$ or KY final states.

A drop of the transverse helicity amplitudes A_{1/2}(Q²) and A_{3/2}(Q²) faster than for ordinary three quark states, because of extra glue-component in valence structure.
A suppressed longitudinal amplitude S_{1/2}(Q²) in comparison with transverse electro-excitation amplitude (J^P=1/2⁺).

The study will include other single meson channels.

Map out large range of W (up to 4 GeV) and Q^2 Dedicated beam times with $E_e = 6.6$, 8.8 GeV Low Q2 quasi-real photoproduction with Forward Tagger

N* Contributions to electron scattering with CLAS12

Nucleon resonance contributions to unpolarized inclusive electron scattering

A. N. Hiller Blin, V. Mokeev, M. Albaladejo, C. Fernández-Ramírez, V. Mathieu, A. Pilloni, A. Szczepaniak, V. D. Burkert, V. V. Chesnokov, A. A. Golubenko, and M. Vanderhaeghen Phys. Rev. C 100, 035201 – Published 3 September 2019

Start from CLAS electrocouplings

Contributions of N* to inclusive e- scattering

Different behaviours as function of Q² in the resonance regions

Sensitive to structure and nature of N*s

Blue = projected CLAS12 data

Meson Spectroscopy with CLAS12 MesonEx

Quasi-real photoproduction with CLAS12

- Detection of multiparticle final state from meson decay in the large acceptance spectrometer CLAS
 - Detection of the scattered electron for the tagging of the quasi-real photon in the CLAS12 FT
 - High-intensity and high-polarization tagged "photon" beam; degree of polarization determined event-by-event from the electron kinematics

35

clas

MesonEx program

Meson spectroscopy in the light-quark sector:

- Detailed mapping of the meson spectrum up to masses of 2.5 GeV
- Search for rare or poorly known states (strangeness-rich, scalars, ...)
- Search states with unconventional quarkgluon configurations

Note poor acceptance below 1.2GeV (half field)

MesonEx : Polarised Two meson production

arXiv.org > hep-ph > arXiv:1906.04841

Search... Help | Advan

High Energy Physics - Phenomenology

Moments of angular distribution and beam asymmetries in $\eta \pi^0$ photoproduction at GlueX

V. Mathieu, M. Albaladejo, C. Fernández-Ramírez, A. W. Jackura, M. Mikhasenko, A. Pilloni, A. P. Szczepaniak (JPAC collaboration)

(Submitted on 11 Jun 2019)

Intensity based on Real Photon Density matrix

$$I(\Omega, \Phi) = I^{0}(\Omega) - P_{\gamma}I^{1}(\Omega)\cos(2\Phi) - P_{\gamma}I^{2}(\Omega)\sin(2\Phi)$$

$$I^{0}(\Omega) = \sum_{L}\sum_{M=0}^{M \leq L} \sqrt{\left(\frac{2L+1}{4\pi}\right)} (2 - \delta_{M,0}) H^{0}(L, M) \Re\left[Y_{L}^{M}(\Omega)\right]$$

$$I^{1}(\Omega) = -\sum_{L}\sum_{M=0}^{M \leq L} \sqrt{\left(\frac{2L+1}{4\pi}\right)} (2 - \delta_{M,0}) H^{1}(L, M) \Re\left[Y_{L}^{M}(\Omega)\right]$$

$$I^{2}(\Omega) = 2\sum_{L}\sum_{M=0}^{M \leq L} \sqrt{\left(\frac{2L+1}{4\pi}\right)} \Im\left[H^{2}(L, M)\right] \Im\left[Y_{L}^{M}(\Omega)\right]$$

Do we need anything different for quasi real ? i.e. intensity with virtual photon density matrix Should also have good data for high $Q^2 2\pi$

Decay θ V φ

Decay ϕ V polarised Φ

Optimised Moments fitter ready for data! *Watch out for √(2L+1) factors

MesonEx : Helicity Polarised Two Meson Production

$$\begin{split} I(\Omega,\Phi) &= I^0(\Omega) + I(\Omega) \cdot P_{\gamma}(\Phi), \\ I^{0,1}(\Omega) &= \pm \sum_{L,M \geqslant 0} \left(\frac{2L+1}{4\pi}\right) \tau(M) H^{0,1}(LM) d_{M0}^L(\theta) \cos M\phi, \\ I^{2,3}(\Omega) &= \sum_{L,M > 0} \left(\frac{2L+1}{4\pi}\right) \tau(M) \operatorname{Im} H^{2,3}(LM) d_{M0}^L(\theta) \sin M\phi, \\ I^0(\Omega) &= -\kappa \sum_{\epsilon,k} |U_k^{(\epsilon)}(\Omega)|^2 + |\widetilde{U}_k^{(\epsilon)}(\Omega)|^2, \\ I^0(\Omega) &= -\kappa \sum_{\epsilon,k} 2\epsilon \operatorname{Re} \left(U_k^{(\epsilon)}(\Omega) \left[\widetilde{U}_k^{(\epsilon)}(\Omega) \right]^* \right), \\ I^1(\Omega) &= -\kappa \sum_{\epsilon,k} 2\epsilon \operatorname{Re} \left(U_k^{(\epsilon)}(\Omega) \left[\widetilde{U}_k^{(\epsilon)}(\Omega) \right]^* \right), \\ I^2(\Omega) &= -\kappa \sum_{\epsilon,k} 2\epsilon \operatorname{Im} \left(U_k^{(\epsilon)}(\Omega) \left[\widetilde{U}_k^{(\epsilon)}(\Omega) \right]^* \right), \\ I^3(\Omega) &= -\kappa \sum_{\epsilon,k} |U_k^{(\epsilon)}(\Omega)|^2 - |\widetilde{U}_k^{(\epsilon)}(\Omega)|^2. \\ \end{split}$$

MesonEx : Fit amplitudes with moments

Pseudo Data from Amplitudes

$$\begin{split} H^0(11) &= H^1(11) + 2\sqrt{\frac{2}{5}} \operatorname{Re}(P_1^{(+)}D_2^{(+)*}) \ , \\ H^1(11) &= \frac{2}{15} \left[3\sqrt{5} \operatorname{Re}(P_0^{(+)}D_1^{(+)*}) - \sqrt{15} \operatorname{Re}(P_1^{(+)}D_0^{(+)*}) + 5\sqrt{3} \operatorname{Re}(S_0^{(+)}P_1^{(+)*}) \right] \ , \\ H^0(20) &= H^1(20) - \frac{2}{35} \left[7|P_1^{(+)}|^2 - 5|D_1^{(+)}|^2 + 10|D_2^{(+)}|^2 \right] \ , \\ H^1(20) &= \frac{4}{35} \left[7|P_0^{(+)}|^2 + 5|D_0^{(+)}|^2 + 7\sqrt{5} \operatorname{Re}(S_0^{(+)}D_0^{(+)*}) \right] \ , \\ H^0(21) &= H^1(21) + \frac{2}{7}\sqrt{6} \operatorname{Re}(D_1^{(+)}D_2^{(+)*}) \ , \\ H^1(21) &= \frac{2}{35} \left[7\sqrt{5} \operatorname{Re}(S_0^{(+)}D_1^{(+)*}) + 7\sqrt{3} \operatorname{Re}(P_0^{(+)}P_1^{(+)*}) + 5\operatorname{Re}(D_0^{(+)}D_1^{(+)*}) \right] \ , \end{split}$$

Analytical Moments from Amplitudes (L,M) = (1,0): H0 = 0.3578; H 0 1 0(L,M) = (1,1): H0 = 0.0000; H 0 1 1 (L,M) = (2,0): H0 = -0.0629; H 0 2 0 $(L,M) = (2,1): H0 = 0.0000; H_0_1$ $(L,M) = (2,2): H0 = -0.1680; H_0_2_2$

(L,M) = (3,1): H0 = 0.0000

Fit Results

+/- 0.00797507 = 0.358112= -0.000740184 +/- 0.000722244 = -0.0623866 +/- 0.000474004 +/- 0.000478794 = -0.000551358 = -0.169541 +/- 0.000885905 $(L,M) = (3,0): H0 = -0.1533; H_0_3_0$ = -0.153232 +/- 0.00448687 H_0_3_1 = -0.000258408 +/- 0.000334288 $(L,M) = (3,2): H0 = -0.1400; H_0_3_2$ = -0.140019 +/- 0.00137683 $(L,M) = (3,3): H0 = 0.0000; H_0_3_3$ = 0.000338522+/- 0.000556094 $(L,M) = (4,0): H0 = -0.0762; H_0_4_0$ = -0.0765479 +/- 0.000712912 $(L,M) = (4,1): H0 = 0.0000; H_0_4_1$ = 0.00024877+/- 0.00030687 $(L,M) = (4,2): H0 = -0.0602; H_0_4_2$ = -0.0605708 +/- 0.000410417 $(L,M) = (4,3): H0 = 0.0000; H_0_4_3$ = -0.000109336 +/- 0.000434857 (L,M) = (4.4): H0 = 0.0000: H 0 4 4= 0.000138865 +/- 0.000480976

Fit components for CosTh

0

2

3

Phi

-2

MesonEx : $\pi^+\pi^-$ p Preliminary Data

Exclusive final state

For ~10% (5%) of collected(expected) data

All t and 6<Eg<10 Gev

Trigger/Torus Field /Detector => Low acceptance below 1.1 GeV

 $M(\pi^{+}\pi^{-})$

Need to account for N*/ Δ in Moments Fits, but contributions do not look too strong

2.5

M(π⁻p)^ε

MesonEx : K⁺K⁻ p Preliminary Data

Exclusive final state

For ~10% (5%) of collected(expected) data

All t and 6<Eg<10 Gev

Trigger/Torus Field /Detector => Low acceptance below 1.1 GeV

Need to account for hyperons in Moments Fits

MesonEx : $\pi^+\pi^+\pi^-$ n Preliminary Data

Missing neutron final state 1400 For $\sim 10\%$ (5%) of collected(expected) data 1200 1000 |t|>2 and 6<Eg<10 Gev 800 600 Trigger/Torus Field /Detector 400 => Low acceptance below 1.3 GeV 200 8.8 1.2 2.2 2.4M(2π⁺π M(2π⁺π 1.5 2.5 1.5 1.5 2 2.5 0.5 $M(\pi^{+}\pi^{-})$ $M(\pi^{+}\pi^{-})$ Need parameterisation of polarised photon production amplitudes Need to include $2\pi + N^*$ contributions (not shown)

Longitudinal plot from CLAS photoproduction @3.5GeV

Longitudinal plot from CLAS photoproduction @3.5GeV

As resonance masses increase they leak into the wrong sector

Define Mass dependent cuts based on Meson or Baryon

- CLAS provides data on many different channels with both electron and photon beams
- Benefit from greater understanding of electron scattering as a tool for hadron spectroscopy and structure studies
- Seperation of t -channel meson and baryon resonance production
 - Through cuts or through amplitudes
- Can we perform spectroscopy on the baryons?
- General parameterisations of 3-body final states
 - Freed isobars?...

Backups

