

GlueX Analysis Steps

1. Monte Carlo Simulation:

* Event generation: specifying initial particles produced.
(Programs: Particle gun, gen8 and bggen)
* Detector Simulation: following particles journey through the detector.
(Programs: hdgeant)
* Smearing: introduction of detector resolution at the hit level.

Output: filename.hddm (xml-like)
2. JANA: event reconstruction \& analysis

Output: ROOT TTree.
3. AmpTools: Amplitude Analysis.

Exercise 2 : Event Selection in JANA

MISSING TRANSVERSE MOMENTUM

locReaction->Add_AnalysisAction(new DHistogramAction_MissingTransverseMomentum(locReaction, false, 400, 0.0, 0.4, "PreKinFit"));
// KINEMATIC FIT
locReaction->Add_AnalysisAction(new DHistogramAction_KinFitResults(locReaction, 0.05)); //5\% confidence level cut on pull histograms only locReaction->Add_AnalysisAction(new DCutAction_KinFitFOM(locReaction, 0.0)); // require kinfit converges
// HISTOGRAM MASSES: POST-KINFIT //false/true: measured/kinfit data
locReaction->Add_AnalysisAction(new DHistogramAction_InvariantMass(locReaction, Pi0, false, 170, 0.05, 0.22, "Pio_PostKinFit")); locReaction->Add_AnalysisAction(new DHistogramAction_MissingMassSquared(locReaction, false, 400, -0.08, 0.08, "PostKinFit"));
locReaction->Add_AnalysisAction(new DHistogramAction_InvariantMass(locReaction, omega, false, 300, 0.5, l.1, "Omega_PostKinFit"));
locReaction->Add AnalysisAction(new DHistogramAction InvariantMass(locReaction, omega, true, 300, 0.5, 1.1, "Omega KinFit"));
locReaction->Add_AnalysisAction(new DHistogramAction_2DInvariantMass(locReaction, l, locXPIDs, locYPIDs, false, 300, 0.5, 1.1, 300, 0.5, 1.1, "PostK inFit"));
/ KINEMATIC FIT CUT
locReaction->Add_AnalysisAction(new DCutAction_KinFitFOM(locReaction, 5.73303E-7)); // +/- 5 sigma confidence level cut
// HISTOGRAM MASSES: KINFIT CUT //false/true: measured/kinfit data
locReaction->Add_AnalysisAction(new DHistogramAction_InvariantMass(locReaction, Pi0, false, 170, 0.05, 0.22, "Pi0_KinFitCut"));
locReaction->Add_AnalysisAction(new DHistogramAction_MissingMassSquared(locReaction, false, 400, -0.08, 0.08, "KinFitCut"));
locReaction->Add_AnalysisAction(new DHistogramAction_InvariantMass(locReaction, omega, false, 300, 0.5, 1.1, "Omega_KinFitCut"));
locReaction->Add_AnalysisAction(new DHistogramAction_InvariantMass(locReaction, omega, true, 300, $0.5,1.1$, "Omega_KinFit_KinFitCut"));
locReaction->Add_AnalysisAction(new DHistogramAction_2DInvariantMass(locReaction, 1, locXPIDs, locYPIDs, false, 300, 0.5 , $1.1,300,0.5,1.1$, "KinFi
/ MISSING TRANSVERSE MOMENTUM
locReaction->Add_AnalysisAction(new DHistogramAction_MissingTransverseMomentum(locReaction, false, 400, 0.0, 0.4, "KinFitCut"));
// KINEMATICS
locReaction->Add_AnalysisAction(new DHistogramAction_ParticleComboKinematics(locReaction, true, "KinFit")); //true: kinematic-fit data locReaction->Add_AnalysisAction(new DHistogramAction_TrackVertexComparison(locReaction));

[^0]_data.push_back(locReaction); //Register the DReaction with the factory
return NOERROR;

Exercise 2 : Event Selection in JANA

After 5 σ CL cut

Exercise 2 : Event Selection in JANA

After 5\% CL cut

After 5 σ CL cut

Exercise 2 : Event Selection in JANA

Summary of the selections

exercise2

Exercise 3a: TTree's \& DSelector's

```
/****************************************************** Exercise3a ******************************************************/
dHist_KinFitCL = new TH1I("KinFitResults", ";Kinematic Fit Confedence Level", 500, 0.0, 1.0);
dHist_OmegaMass_Measured = new TH1I("OmegaMass_Measured", ";M_{#pi^{+}#pi^{-}#pi^{0}} (GeV/c^{2})", 300, 0.5, 1.1);
dHist_OmegaMass_KinFit = new TH1I("OmegaMass_KínFit", ";M_{#pi^i^{+}#pi^{-}#pi^{0}} (GeV/c^{2})", 300, 0.5, 1.1);
set<map<Particle_t, set<Int_t> > > locUsedSoFar_OmegaMass;
double KinFitCL = dComboWrapper->Get_ConfidenceLevel_KinFit();
if(KinFitCL < 5.73303E-7)
    continue;
dHist_KinFitCL->Fill(KinFitCL);
double OmegaMass_measured = (locPiPlusP4_Measured + locPiMinusP4_Measured + locPhoton1P4_Measured + locPhoton2P4_Measured).M();
double OmegaMass_KinFit = (locPiPlusP4 + locPiMinusP4 + locDecayíngPi0P4).M();
map<Particle_t, set<Int_t> > locUsedThisCombo_OmegaMass;
locUsedThisCombo_OmegaMass[PiPlus].insert(locP̄iPlusTrackID);
locUsedThisCombo_OmegaMass[PiMinus].insert(locPiMinusTrackID);
locUsedThisCombo_OmegaMass[Gamma].insert(locPhoton1NeutralID);
locUsedThisCombo_OmegaMass[Gamma].insert(locPhoton2NeutralID);
if(locUsedSoFar_OmegaMass.find(locUsedThisCombo_OmegaMass) == locUsedSoFar_OmegaMass.end())
    {
        dHist_OmegaMass_Measured->Fill(OmegaMass_measured);
        dHist_OmegaMass_KinFit->Fill(OmegaMass_KinFit);
        locUsedSoFar_OmegaMass.insert(locUsedThisCombo_OmegaMass);
    }
```


Exercise 3a: TTree's \& DSelector's

Measured

Exercise 5a : Extracting ω SDMEs

Spin-density matrix elements (SDMEs) are an alternate way of expressing polarization observables of non-zero spin objects. In our case, spin-1 (vector) mesons. The density matrix, r, represents the state (pure, mixed or both) of a particle with non-zero spin.
We will construct a toy model of omega photoproduction where we have:

Intensity $=$ norm $* P S * B W * W(\cos \theta, \phi, \Phi) * e^{A t}$
This talk will mostly focus on $W(\cos \theta, \phi, \Phi)$

$$
\begin{aligned}
W(\cos \theta, \phi, \phi)= & \frac{3}{4 \pi}\left[\frac{1}{2}\left(1-\rho_{00}^{0}\right)+\frac{1}{2}\left(3 \rho_{00}^{0}-1\right) \cos ^{2} \theta-\sqrt{2} \operatorname{Re\rho }_{10}^{0} \sin 2 \theta \cos \phi-\rho_{1-1}^{0} \sin ^{2} \theta \cos 2 \phi\right. \\
& \quad-P_{\gamma} \cos 2 \Phi\left(\rho_{11}^{1} \sin ^{2} \theta+\rho_{00}^{1} \cos ^{2} \theta-\sqrt{2} \operatorname{Re} \rho_{10}^{1} \sin 2 \theta \cos \phi-\rho_{1-1}^{1} \sin ^{2} \theta \cos 2 \phi\right) \\
& \left.\quad-P_{\gamma} \sin 2 \Phi\left(\sqrt{2} I m \rho_{10}^{2} \sin 2 \theta \sin \phi+\operatorname{Im~}_{1}^{2} \sin \sin ^{2} \theta \sin 2 \phi\right)\right] .
\end{aligned}
$$

$\Phi \equiv$ Angle between production plane and photon polarization plane
$\theta, \phi \equiv$ Angles relative to the chosen quantization axis

Parameter Selection

Limited measurements for photoproduction at GlueX energies. We will use values from Ballam, etal. (1973)

We will use the following parameters for our simulation.
t-slope $=7.5 \mathrm{GeV}^{-2}$

$$
\rho_{1-1}^{1}=0.4
$$

$\operatorname{Im} \rho_{1-1}^{2}=-0.2$
The rest of the SDMEs are set to 0

Exercise 5a: Extracting ω SDMEs

Need some help to interpret this !!!

		$E_{\gamma}=9.3 \mathrm{GeV}$	
$\|t\|\left(\mathrm{GeV}^{2}\right)$	$0.02-0.06$	$0.06-0.15$	$0.15-0.60$
ρ_{00}^{0}	0.00 ± 0.07	0.02 ± 0.06	0.20 ± 0.07
ρ_{1-1}^{0}	0.16 ± 0.08	0.06 ± 0.06	-0.05 ± 0.07
$\operatorname{Re}_{10}^{0}$	-0.03 ± 0.05	0.01 ± 0.04	0.01 ± 0.06
ρ_{00}^{1}	-0.08 ± 0.13	-0.13 ± 0.11	-0.01 ± 0.14
ρ_{11}^{1}	0.09 ± 0.12	0.14 ± 0.10	0.05 ± 0.10
ρ_{1-1}^{1}	0.38 ± 0.14	0.29 ± 0.12	0.54 ± 0.13
$\operatorname{Re\rho }_{10}^{1}$	0.04 ± 0.08	-0.11 ± 0.08	-0.02 ± 0.10
$\operatorname{Im} \rho_{1-1}^{2}$	-0.19 ± 0.14	-0.29 ± 0.14	-0.21 ± 0.13
$\operatorname{Im} \rho_{10}^{2}$	0.01 ± 0.09	0.10 ± 0.08	0.12 ± 0.09
P_{0}	0.9 ± 0.3	0.7 ± 0.3	1.1 ± 0.3

whats next ?

First, submit some jobs.

Next, make an analysis test of $\gamma p \rightarrow \omega \mathrm{p}\left|\omega \rightarrow \Pi^{+} \Pi^{-} \Pi^{0}\right| \Pi^{0} \rightarrow \gamma \gamma$.

- Then, jump into exotica.
(Need your advices \& orientations)

E표표

[^0]: // KINEMATICS COMPARISON
 locReaction->Add_AnalysisAction(new DHistogramAction_ParticleComboGenReconComparison(locReaction, false, "Measured")); locReaction->Add_AnalysisAction(new DHistogramAction_ParticleComboGenReconComparison(locReaction, true, "KinFit"));

