Hadron Physics Analysis meeting

Abdennacer Hamdi

GlueX Analysis Steps

1. Monte Carlo Simulation:

*** Event generation**: specifying initial particles produced.

(Programs: Particle gun, gen8 and bggen)

*** Detector Simulation**: following particles journey through the detector. (Programs: *hdgeant*)

*** Smearing:** introduction of detector resolution at the hit level. <u>Output:</u> filename.hddm (xml-like)

2. JANA: event reconstruction & analysis <u>Output:</u> ROOT TTree.

3. AmpTools: Amplitude Analysis.

<u>Process studied here is</u> : $\gamma p \rightarrow \omega p \mid \omega \rightarrow \pi^+\pi^-\pi^0 \mid \pi^0 \rightarrow \gamma \gamma$

/ MISSING TRANSVERSE MOMENTUM

locReaction->Add_AnalysisAction(new DHistogramAction_MissingTransverseMomentum(locReaction, false, 400, 0.0, 0.4, "PreKinFit"));

// KINEMATIC FIT

locReaction->Add_AnalysisAction(new DHistogramAction_KinFitResults(locReaction, 0.05)); //5% confidence level cut on pull histograms only locReaction->Add_AnalysisAction(new DCutAction_KinFitFOM(locReaction, 0.0)); // require kinfit converges

// HISTOGRAM MASSES: POST-KINFIT //false/true: measured/kinfit data

locReaction->Add_AnalysisAction(new DHistogramAction_InvariantMass(locReaction, Pi0, false, 170, 0.05, 0.22, "Pi0_PostKinFit")); locReaction->Add_AnalysisAction(new DHistogramAction_MissingMassSquared(locReaction, false, 400, -0.08, 0.08, "PostKinFit")); locReaction->Add_AnalysisAction(new DHistogramAction_InvariantMass(locReaction, omega, false, 300, 0.5, 1.1, "Omega_PostKinFit")); locReaction->Add_AnalysisAction(new DHistogramAction_InvariantMass(locReaction, omega, false, 300, 0.5, 1.1, "Omega_PostKinFit")); locReaction->Add_AnalysisAction(new DHistogramAction_InvariantMass(locReaction, omega, true, 300, 0.5, 1.1, "Omega_KinFit")); locReaction->Add_AnalysisAction(new DHistogramAction_InvariantMass(locReaction, omega, true, 300, 0.5, 1.1, "Omega_KinFit")); locReaction->Add_AnalysisAction(new DHistogramAction_2DInvariantMass(locReaction, 1, locXPIDs, locYPIDs, false, 300, 0.5, 1.1, 300, 0.5, 1.1, "PostK\ inFit"));

// KINEMATIC FIT CUT

locReaction->Add_AnalysisAction(new DCutAction_KinFitFOM(locReaction, 5.73303E-7)); // +/- 5 sigma confidence level cut

// HISTOGRAM MASSES: KINFIT CUT //false/true: measured/kinfit data

locReaction->Add_AnalysisAction(new DHistogramAction_InvariantMass(locReaction, Pi0, false, 170, 0.05, 0.22, "Pi0_KinFitCut")); locReaction->Add_AnalysisAction(new DHistogramAction_MissingMassSquared(locReaction, false, 400, -0.08, 0.08, "KinFitCut")); locReaction->Add_AnalysisAction(new DHistogramAction_InvariantMass(locReaction, omega, false, 300, 0.5, 1.1, "Omega_KinFitCut")); locReaction->Add_AnalysisAction(new DHistogramAction_InvariantMass(locReaction, omega, false, 300, 0.5, 1.1, "Omega_KinFitCut")); locReaction->Add_AnalysisAction(new DHistogramAction_InvariantMass(locReaction, omega, true, 300, 0.5, 1.1, "Omega_KinFitCut")); locReaction->Add_AnalysisAction(new DHistogramAction_InvariantMass(locReaction, omega, true, 300, 0.5, 1.1, "Omega_KinFitCut")); locReaction->Add_AnalysisAction(new DHistogramAction_2DInvariantMass(locReaction, 1, locXPIDs, locYPIDs, false, 300, 0.5, 1.1, 300, 0.5, 1.1, "KinFi\ ;

// MISSING TRANSVERSE MOMENTUM

locReaction->Add_AnalysisAction(new DHistogramAction_MissingTransverseMomentum(locReaction, false, 400, 0.0, 0.4, "KinFitCut"));

// KINEMATICS

locReaction->Add_AnalysisAction(new DHistogramAction_ParticleComboKinematics(locReaction, true, "KinFit")); //true: kinematic-fit data locReaction->Add_AnalysisAction(new DHistogramAction_TrackVertexComparison(locReaction));

// KINEMATICS COMPARISON

locReaction->Add_AnalysisAction(new DHistogramAction_ParticleComboGenReconComparison(locReaction, false, "Measured")); locReaction->Add_AnalysisAction(new DHistogramAction_ParticleComboGenReconComparison(locReaction, true, "KinFit"));

_data.push_back(locReaction); //Register the DReaction with the factory

return NOERROR;

Combos / 1 MeV/c

After 5σ CL cut

Summary of the selections

exercise2

Exercise 3a : TTree's & DSelector's

```
dHist_KinFitCL = new TH11("KinFitResults", ";Kinematic Fit Confedence Level", 500, 0.0, 1.0);
dHist_OmegaMass_Measured = new TH11("OmegaMass_Measured", ";M_{#pi^{+}#pi^{-}#pi^{0}} (GeV/c^{2})", 300, 0.5, 1.1);
dHist_OmegaMass_KinFit = new TH11("OmegaMass_KinFit", ";M_{#pi^{+}#pi^{-}#pi^{0}} (GeV/c^{2})", 300, 0.5, 1.1);
```

```
set<map<Particle_t, set<Int_t> > > locUsedSoFar_OmegaMass;
```

```
double KinFitCL = dComboWrapper->Get_ConfidenceLevel_KinFit();
if(KinFitCL < 5.73303E-7)
continue;
dHist_KinFitCL->Fill(KinFitCL);
```

```
double OmegaMass_measured = (locPiPlusP4_Measured + locPiMinusP4_Measured + locPhoton1P4_Measured + locPhoton2P4_Measured).M();
double OmegaMass_KinFit = (locPiPlusP4 + locPiMinusP4 + locDecayingPi0P4).M();
map<Particle_t, set<Int_t> > locUsedThisCombo_OmegaMass;
locUsedThisCombo_OmegaMass[PiPlus].insert(locPiPlusTrackID);
locUsedThisCombo_OmegaMass[PiMinus].insert(locPiMinusTrackID);
locUsedThisCombo_OmegaMass[Gamma].insert(locPhoton1NeutralID);
locUsedThisCombo_OmegaMass[Gamma].insert(locPhoton2NeutralID);
```

```
if(locUsedSoFar_OmegaMass.find(locUsedThisCombo_OmegaMass) == locUsedSoFar_OmegaMass.end())
{
    dHist_OmegaMass_Measured->Fill(OmegaMass_measured);
    dHist_OmegaMass_KinFit->Fill(OmegaMass_KinFit);
    locUsedSoFar_OmegaMass.insert(locUsedThisCombo_OmegaMass);
}
```


Exercise 3a : TTree's & DSelector's

Exercise 5a : Extracting w SDMEs

Spin-density matrix elements (SDMEs) are an alternate way of expressing polarization observables of non-zero spin objects. In our case, spin-1 (vector) mesons. The density matrix, r, represents the state (pure, mixed or both) of a particle with non-zero spin.

We will construct a **toy model** of omega photoproduction where we have:

Intensity = norm $*PS * BW * W(\cos\theta, \phi, \Phi) * e^{At}$

This talk will mostly focus on $W(\cos\theta, \phi, \Phi)$

 $W(\cos\theta, \phi, \Phi) = \frac{3}{4\pi} \Big[\frac{1}{2} (1 - \rho_{00}^{0}) + \frac{1}{2} (3\rho_{00}^{0} - 1) \cos^{2}\theta - \sqrt{2} \operatorname{Re}\rho_{10}^{0} \sin 2\theta \cos\phi - \rho_{1-1}^{0} \sin^{2}\theta \cos 2\phi - \rho_{1}^{0} \cos^{2}\theta - P_{y} \cos 2\Phi (\rho_{11}^{1} \sin^{2}\theta + \rho_{00}^{1} \cos^{2}\theta - \sqrt{2} \operatorname{Re}\rho_{10}^{1} \sin^{2}\theta \cos\phi - \rho_{1-1}^{1} \sin^{2}\theta \cos 2\phi) \Big]$

 $-P_{\gamma}\sin 2\Phi\left(\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin 2\theta\sin \phi+\operatorname{Im}\rho_{1-1}^{2}\sin^{2}\theta\sin 2\phi\right)\right].$

 $\Phi \equiv$ Angle between production plane and photon polarization plane $\theta, \phi \equiv$ Angles relative to the chosen quantization axis

Parameter	Sele	ctior	L L				
Parameter		(1)	1				
	JUIC	CUOI					
PHYSICAL REVIEW D VOLUM	E 7. NUMBER 11	1 JUNE 1	973				
Vector-Meson Production by Polarized Photons at 2.8, 4.7, and 9.3 GeV*					Limited measurements for photoproduction		
J. Ballam, G. B. Chadwick, Y. Elsenberg, f. E. Kogan, f. K. C. Moffeli, P. Seyboth, I				at GlueX energies. We will use values from			
Stanford Linear Accelerator Center	, Stanford University, Stanford,	California 94305		Ballam, et al. (1973)			
H. H. Bingham, W. B. Fretter, W. J. Podols University of California and Lawrence	sky,11 M. S. Rabin,11 A. H. Ro e Berkeley Laboratory, Berkeley	osenfeld, and G. Smadja , <i>California</i> 94720	5 5		, , ,		
(Receive	a 13 November 1972)						
III. Reaction $\gamma p \rightarrow p \omega$ at 2.8, 4.7, and 9.3 cross sections and forward differential			E = 9.3 GeV				
III. Reaction $\gamma p \rightarrow p\omega$ at 2.8, 4.7, and 9.3 cross sections and forward differential nos $d\sigma/dt _{t=0}$ and slopes A from a fit of the $d\sigma/dt _{t=0}e^{At}$.			$E_{\gamma} = 9.3 \text{ GeV}$		We will use the following		
III. Reaction $\gamma p \rightarrow p \omega$ at 2.8, 4.7, and 9.3 cross sections and forward differential ans $d\sigma/dt _{t=0}e^{A}$. $d\sigma/dt _{t=0}e^{A}$. E_{γ} (GeV)	t (GeV ²)	0.02-0.06	$E_{\gamma} = 9.3 \text{ GeV}$ 0.06-0.15	0.15-0.60	We will use the following parameters for our simulation.		
III. Reaction $\gamma p \rightarrow p \omega$ at 2.5, 4.7, and 9.3 cross sections and forward differential me $d\sigma/dt _{t=0}$ and slopes A from a fit of the $d\sigma/dt _{t=0}e^{d\sigma}$. E_{γ} (GeV) 2.8 4.7 9.3	t (GeV ²)	0.02-0.06 0.00±0.07	$E_{\gamma} = 9.3 \text{ GeV}$ 0.06-0.15 0.02 ± 0.06	0.15-0.60 0.20±0.07	We will use the following parameters for our simulation.		
II. Reaction $\gamma \rightarrow \rho \sim \rho a$ t 2.8, 4.7, and 9.3 orose sections and forward differential $d\sigma/dt _{r=\sigma}d\sigma$ from a tit of the $d\sigma/dt _{r=\sigma}d\sigma$ from a tit of the $d\sigma/dt _{r=\sigma}d\sigma$ for r and r b, 3 5.3 × 0.5 3.0 × 0.3 1.9 = 0.3	$\frac{ t }{\rho_{00}^{0}}$	0.02 - 0.06 0.00 ± 0.07 0.16 ± 0.08	$E_{\gamma} = 9.3 \text{ GeV}$ 0.06-0.15 0.02±0.06 0.06±0.06	0.15-0.60 0.20 ± 0.07 -0.05 ± 0.07	We will use the following parameters for our simulation.		
II. Reaction $\gamma - \beta - \alpha$ at 2.8, 4.7, and 9.3 m de $dt_{1-\alpha}e^{-\Delta}$. E_{1} (GeV) 2.8 4.7 9.3 5.3 * 0.5 3.0 * 0.3 1.9 * 0.3 GeV ³) 33.2 * 3.6 * 22.0 * 3.2 * 13.7 * 1.6*	$ t (GeV^2)$ ρ_{00}^{0} ρ_{1-1}^{0} $Re\rho_{10}^{0}$	0.02 - 0.06 0.00 ± 0.07 0.16 ± 0.08 -0.03 ± 0.05	$E_{\gamma} = 9.3 \text{ GeV}$ 0.06-0.15 0.02 ± 0.06 0.06 ± 0.06 0.01 ± 0.04	0.15-0.60 0.20 ± 0.07 -0.05 ± 0.07 0.01 ± 0.06 0.01 ± 0.14	We will use the following parameters for our simulation. t-slope = 7.5 GeV $^{-2}$		
II. Reaction $\gamma - \rho \sim a \pm 2, 8, 4, 7, and 9, 3 or some sections and Forward differential defAtt1=0eA. E1(CeV) 2.6 4.7 9.3 5.3 × 0.5 3.0 × 0.3 1.9 × 0.3 GeV3) 3.2 × 3.64 22.0 × 3.2 13.7 × 1.64 6.8 × 0.66 7.5 × 0.04 7.5 × 0.84$	$ t (GeV2)$ P_{0}^{0} P_{1-1}^{0} Rep_{10}^{0} P_{00}^{0}	0.02 - 0.06 0.00 ± 0.07 0.16 ± 0.08 -0.03 ± 0.05 -0.08 ± 0.13 0.09 ± 0.13	$E_{\gamma} = 9.3 \text{ GeV}$ 0.06-0.15 0.02 ± 0.06 0.06 ± 0.06 0.01 ± 0.04 -0.13 ± 0.11 0.14 ± 0.10	$\begin{array}{c} 0.15 - 0.60 \\ \hline 0.20 \pm 0.07 \\ - 0.05 \pm 0.07 \\ 0.01 \pm 0.06 \\ - 0.01 \pm 0.14 \\ 0.05 \pm 0.10 \end{array}$	We will use the following parameters for our simulation. t-slope = 7.5 GeV ⁻² $\rho_{1-1}^1 = 0.4$		
III. Reaction $\gamma p \rightarrow \rho_{P}$ at 2.8, 4.7, and 9.3 or cross sections and forward differential default _{1=0}e^{A_{D}} $\frac{E_{\gamma}}{E_{\gamma}} (GeV)$ $\frac{E_{\gamma}}{E_{\gamma}} (GeV)$	$ t (GeV^2)$ p_{0}^{0} p_{1-1}^{0} Rep_{10}^{0} p_{0}^{1} p_{0}^{1}	0.02 - 0.06 0.00 ± 0.07 0.16 ± 0.08 -0.03 ± 0.05 -0.08 ± 0.13 0.09 ± 0.12 0.24 ± 0.14	$E_{y} = 9.3 \text{ GeV}$ $0.06 - 0.15$ 0.02 ± 0.06 0.06 ± 0.06 0.01 ± 0.04 -0.13 ± 0.11 0.14 ± 0.10 0.29 ± 0.12	$\begin{array}{c} 0.15 - 0.60 \\ \hline 0.20 \pm 0.07 \\ -0.05 \pm 0.07 \\ 0.01 \pm 0.06 \\ -0.01 \pm 0.14 \\ 0.05 \pm 0.10 \\ 0.54 \pm 0.13 \end{array}$	We will use the following parameters for our simulation. t-slope = 7.5 GeV $^{-2}$ $\rho_{1-1}^1=0.4$		
III. Rescion $\gamma - \rho_{P} \to \rho_{P}$ at 2.8, 4.7, and 9.3 or $\sigma_{P} \to \rho_{P} \to \rho_{P}$ at 2.6, 4.7, and 9.3 or $\sigma_{P} \to \sigma_{P} \to \sigma_{P}$ at a large A from a fit of the $d\sigma/dt _{s=0}e^{2A}$. E_{p} (CeV) 2.8 4.7 9.3 E_{p} (CeV) 3.2.8.5.6 2.0.9.3.2 1.3.7 1.6 ⁴ $6.8 \approx 0.6^{2}$ 7.9 4.0.9 7.5 + 0.8 ⁴ $2.4 \approx 0.4$ 1.7 + 0.3 1.8 = 0.3 (CeV ³) 1.6.8.1 ⁵ 1.4.4.8 1.4.4.8 1.4.4.2.1 ⁴	$ t (GeV^2)$ p_{0}^{0} p_{1-1}^{0} Rep_{10}^{0} p_{10}^{1} p_{1-1}^{1}	0.02 - 0.06 0.00 ± 0.07 0.16 ± 0.08 -0.03 ± 0.05 -0.08 ± 0.13 0.09 ± 0.12 0.38 ± 0.14 0.04 ± 0.08	$E_{\gamma} = 9.3 \text{ GeV}$ 0.06-0.15 0.02 ± 0.06 0.06 ± 0.06 0.01 ± 0.04 -0.13 ± 0.11 0.14 ± 0.10 0.29 ± 0.12 -0.11 ± 0.08	$\begin{array}{c} 0.15-0.60\\ 0.20\pm0.07\\ -0.05\pm0.07\\ 0.01\pm0.06\\ -0.01\pm0.14\\ 0.05\pm0.10\\ 0.54\pm0.13\\ -0.02\pm0.10\\ \end{array}$	We will use the following parameters for our simulation. t-slope = 7.5 GeV $^{-2}$ $\rho_{1-1}^1 = 0.4$ ${\rm Im} \ \rho_{1-1}^2 = -0.2$		
III. Reaction $\gamma p \rightarrow p_0$ at 2.8, 4.7, and 9.3 orone sections and forward differential deviation of the section of the section of the section deviation of the section of the section of the section deviation of the section of the s	$ t (GeV^2)$ $\rho_{0}^{0} = \rho_{0}^{0}$ $\rho_{0}^{0} = \rho_{0}^{0}$ ρ_{0}^{1} $\rho_{0}^{1} = \rho_{0}^{0}$ $Re\rho_{10}^{0}$ $Im \rho_{0}^{2}$	$\begin{array}{c} 0.02-0.06\\ 0.00\pm0.07\\ 0.16\pm0.08\\ -0.03\pm0.05\\ -0.08\pm0.13\\ 0.09\pm0.12\\ 0.38\pm0.14\\ 0.04\pm0.08\\ -0.19\pm0.14 \end{array}$	$E_{\gamma} = 9.3 \text{ GeV}$ 0.06 - 0.15 0.02 ± 0.06 0.06 ± 0.06 0.01 ± 0.04 -0.13 ± 0.11 0.14 ± 0.10 0.29 ± 0.12 -0.11 ± 0.08	$\begin{array}{c} 0.15-0.69\\ 0.20\pm0.07\\ -0.05\pm0.07\\ 0.01\pm0.06\\ -0.01\pm0.14\\ 0.05\pm0.10\\ 0.54\pm0.13\\ -0.02\pm0.10\\ -0.21\pm0.13\\ \end{array}$	We will use the following parameters for our simulation. t-slope = 7.5 GeV $^{-2}$ $\rho_{1-1}^1=0.4$ Im $\rho_{1-1}^2=-0.2$		
III. Rescion $\gamma \to -\rho = 4$ 2.8, 4.7, and 9.3 and $\sigma/dt _{s=0}e^{-2}$. E_{γ} (GeV) 2.8 4.7 9.3 GeV^2) 33.2 3.6 2.0 4.3.2 13.7 1.6 * $6.8 + 0.6^{2}$ 7.9 4.0 * 2.4 + 0.4 1.7 40.3 1.8 + 0.3 γ .GeV ³) 41.6 4.5 1 1.4 4.4 5 11.4 ± 1.1 * 7.3 ± 2.4 * 8.5 ± 2.4 * 6.6 ± 1.1 *	$ t (GeV^3)$ ρ_{0}^{S} $\rho_{1}^{S} = 1$ $Re\rho_{10}^{S}$ ρ_{11}^{S} ρ_{11}^{S} $Re\rho_{10}^{S}$ $Im\rho_{1}^{S} = 1$	$\begin{array}{c} 0.02-0.06\\ 0.00\pm0.07\\ 0.16\pm0.08\\ -0.03\pm0.05\\ -0.08\pm0.13\\ 0.09\pm0.12\\ 0.38\pm0.14\\ 0.04\pm0.08\\ -0.19\pm0.14\\ 0.019\pm0.14\\ 0.019\pm0.14\\ \end{array}$	$E_y = 9.3 \text{ GeV}$ 0.06 - 0.15 0.02 ± 0.06 0.06 ± 0.06 0.01 ± 0.04 -0.13 ± 0.11 0.14 ± 0.10 0.29 ± 0.12 -0.11 ± 0.08 -0.29 ± 0.14	$\begin{array}{c} 0.15-0.60\\ \hline 0.20\pm0.07\\ -0.05\pm0.07\\ 0.01\pm0.14\\ 0.06\pm0.10\\ 0.54\pm0.10\\ -0.02\pm0.10\\ -0.21\pm0.13\\ -0.02\pm0.10\\ -0.21\pm0.13\\ 0.12\pm0.09\end{array}$	We will use the following parameters for our simulation. t-slope = 7.5 GeV ⁻² $\rho_{1-1}^1 = 0.4$ Im $\rho_{1-1}^2 = -0.2$		

Exercise 5a : Extracting w SDMEs

Need some help to interpret this !!!

COVAR	RIANCE MATRIX CA	LCULATED SU	CCESSFULLY	Offline Software .	🕜 GitHub - J	
FCN=0	521008 FROM MIGR	AD STAT	US=CONVERGED	317	318 TOTAL	
		EDM=5.76642	e-05	GY= 1 ERR	OR MATRIX ACC	URATE
EXT	PARAMETER	Compos	se Addresse	es Folders	OSTEPINS S	eaFIRST Help
NO.	NAME		VALUE	ERROR	SIZE	DERIVATIVE
1	Pi+Pi-Pi0::xpol	::omega re	1	fixed		
2	Pi+Pi-Pi0::xpol	::omega_im_	List Delete0	fixed		
3		rho000	0.022323	0.0012878	0.0011305	7.5139
4		rho100	0.023653	0.0010596	0.00092512	s week <u>1, 3996</u> etin
5		rho1m10	-0.043592	0.0019788	don 0.0017338	amdi" 0. 19653 ame
6		rho111	0.0057774	0.0056698	0.0045815	-0.19074
7		rho001	-0.013252	0.0048171	0.0038922	0.3033
8		rho101	-0.011167	0.0039955	er @ 0.0034778	-0.39718
9		rho1m11	0.37541	0.0073812	0.0070262	0.38232
10		rho102	-6.8887e-05	0.0037722	0.0033392	-0.71528
11		rho1m12	-0.18531	0.0073029	0.0065822	View 0.14708 Ver

		$E_{\gamma} = 9.3 \text{ GeV}$	
t (GeV ²)	0.02-0.06	0.06-0.15	0.15-0.60
ρ ⁰ ₀₀	0.00 ± 0.07	0.02 ± 0.06	0.20 ± 0.07
P 1 -1	0.16 ± 0.08	0.06 ± 0.06	-0.05 ± 0.07
$\operatorname{Re}\rho_{10}^{0}$	-0.03 ± 0.05	0.01 ± 0.04	0.01 ± 0.06
P 100	-0.08 ± 0.13	-0.13 ± 0.11	-0.01 ± 0.14
P 11	0.09 ± 0.12	0.14 ± 0.10	0.05 ± 0.10
ρ_{1-1}^{1}	0.38 ± 0.14	0.29 ± 0.12	0.54 ± 0.13
Replo	0.04 ± 0.08	-0.11 ± 0.08	-0.02 ± 0.10
$Im \rho_{1-1}^{2}$	-0.19 ± 0.14	-0.29 ± 0.14	-0.21 ± 0.13
$\operatorname{Im} \rho_{10}^2$	0.01 ± 0.09	0.10 ± 0.08	0.12 ± 0.09
Pa	0.9 ± 0.3	0.7 ± 0.3	1.1 ± 0.3

whats next ?

- First, submit some jobs.
- Next, make an analysis test of $\gamma p \to \omega p \mid \omega \to \pi^+\pi^-\pi^0 \mid \pi^0 \to \gamma \gamma$.
- Then, jump into exotica.

(Need your advices & orientations)

