Project: Hall D Cryogenic Target	
Tittle: Relief through main line to tank (m	non-code)
Document Number: TGT-CALC-401-003	
Revision: Original	
Author: Dave Meekins	Date: 2/4/2012
Checked:	Date:
Approved:	Date:
Code(s) of Record:	
ASME B31.3 2010 ASME B31 12 2011	
ASME BOVC VIII D1 2010	
Reference Codes	
API 520 API 521	
NFPA 2,55,497	
CGA 5	
Reference Drawings	
TGT-401-0001-1000	
Description:	
Hall D target relief though main line	e to tank. TGT-CALC-401-001 gives mass flow
normal target supply/return system	. For spacial reasons 1" tube has been selected at
the gas panel. All return flow must	pass through a check valve to reach the storage
tank. Assume gas as it leaves the t	target is at 300K. The Weymouth friction factor will
indicates that the ASME relief valve	s should not activate for a IV loss incident.

Design assumptions limits and set points for pressures		
	$P_{atm} \coloneqq 14.7 \cdot psi$	atm pressure absolute
	$P_{op} \coloneqq 18 \cdot psi$	assumed cold operating pressure absolute
Fluid Pro	operties for H2:	
	$M_{H2} \coloneqq 2 \cdot \frac{gm}{mol}$	Moler masse of H2
	$R_{H2} \coloneqq 4124.3 \cdot \frac{J}{kg \cdot K}$	gas constant
	$\rho_{H2}(T,P) \coloneqq \frac{P}{\left(R_{H2} \cdot T\right)}$	density of H2 and from ideal gas law
	$T_{room} \coloneqq 300 \cdot K$	room temperature
Spec	ific heats of H2	
	$c_{pH2} \coloneqq 0.143 \cdot 10^5 \cdot \frac{J}{kg \cdot K}$	$c_{vH2} \coloneqq 0.102 \cdot 10^5 \cdot rac{J}{kg \cdot K}$
	$k_{H2} \! \coloneqq \! \frac{c_{pH2}}{c_{vH2}} \! = \! 1.402$	Ratio of specific heat for H2
	$\mu_{H2300} := 0.8959 \cdot 10^{-5} \cdot Pa \cdot s$	visc of H2 at 300K and 30 psi
	$v_{soundH2} \coloneqq 1321 \cdot \frac{m}{s}$	speed of sound for H2 at 300K and 30 psi
Critic simil	cal flow pressure ratios for H2 det ar to API 520 eq 3.1	ermined using the ideal gas assumptions
	$Rc_{H2} \coloneqq \left(rac{2}{k_{H2}+1} ight)^{rac{k_{H2}}{k_{H2}-1}}$	

from TGT-CALC-401-001

$$dm \coloneqq 7.82 \cdot \frac{gm}{s}$$
 mass flow from IV loss.

Flow Path:

The main line to the tank from the hall is 1.25" NPS Sch 5s with an assumed length of 200 ft. 8 elbows are assumed to be in this path. There are 3 ball valves in this path as well. From the main header in the hall to the gas panel check valve there is ~20ft of 1.5" nom flex line and 2 ft of 1" tube. There is an enlargement from the 1" tube to the 1.5" nom flex. We will work from the tank to the check in the hall.

$$\begin{split} L_{cl} := (200 \cdot ft) + 3 \cdot 20 \cdot ft & \text{effective length line from tank} \\ \text{to hall gas panel} & \text{ID}_{cl} := 1.53 \cdot in & \text{ID of flex lines} \\ \\ A_{cl} := \pi \cdot \frac{ID_{cl}^2}{4} & \text{cross area of flex} \\ \\ f_{cl} := \frac{0.032 \cdot in^{\frac{1}{3}}}{ID_{cl}^{\frac{1}{3}}} = 0.028 & \text{Weymouth friction factor} \\ \\ f_{cl} := \frac{dm}{ID_{cl}^{\frac{1}{3}}} = 0.028 & \text{Weymouth friction factor} \\ \\ dV_{H2} := \frac{dm}{\rho_{H2}(T_{room}, P_{op})} = 0.078 \frac{m^3}{s} & \text{volumetric flow of H2} \\ \\ v_{cl} := \frac{dV_{H2}}{A_{cl}} = 65.727 \frac{m}{s} & \text{velocity in flex line} \\ \\ K_{cl} := f_{cl} \cdot \frac{L_{cl}}{ID_{cl}} = 56.63 & \text{resistance coef for line} \\ \\ K_{bmd} := 30 \cdot f_{cl} & \text{resistance coef for nom bend} \\ \\ K_{bv} := 3 \cdot f_{cl} & \text{resistance coef for ball valve} \\ \end{split}$$

$$K_{ent} \coloneqq 1.0$$
resistance coef for tank
entrancepressure loss main line $\Delta P_{et} \coloneqq (K_{et} + 8 \cdot K_{bnd} + 3 \cdot K_{bn} + K_{end}) \cdot \rho_{H2} (T_{room}, P_{en}) \cdot \frac{v_{el}^2}{2} = 2.028 \ psi$ **Gas panel:** $L_{gp} \coloneqq (2 \cdot ft)$ estimated length of gas
panel tubing to valve $t_{wall} \coloneqq 0.035 \cdot in$ $OD \coloneqq 1 \cdot in$ $ID_{gp} \coloneqq OD - 2 \cdot t_{wall}$ $ID of gas panel return tube$ $A_{gp} \coloneqq \pi \cdot \frac{ID_{gp}^2}{4}$ cross area of return tube $f_{gp} \coloneqq \frac{0.032 \cdot in^{\frac{1}{3}}}{ID_{gp}^{\frac{1}{3}}} = 0.033$ Weymouth friction factor $P \coloneqq \Delta P_{el} + P_{ap} = 20.028 \ psi$ $P \coloneqq \Delta P_{el} + P_{ap} = 20.028 \ psi$ $v_{gp} \coloneqq \frac{dV_{H2}}{A_{gp}} = 159.879 \ \frac{m}{s}$ velocity in return tube

$$\begin{split} K_{gp} \coloneqq f_{gp} \cdot \frac{L_{gp}}{ID_{gp}} = 0.346 & \text{resistance coef return line} \\ K_{eltow} \coloneqq 30 \cdot f_{gp} & \text{resistance of elbow at tgt} \\ top \\ \beta \coloneqq \frac{ID_{gp}}{ID_d} \\ K_{en} \coloneqq \frac{(1-\beta^2)}{\beta^4} = 4.619 & \text{resistance coef for} \\ enlargement \\ \end{split}$$

$$\begin{split} Pressure drop \text{ on gas panel} \\ \Delta P_{gp} \coloneqq (K_{gp} + 2 \cdot K_{elbow} + K_{en}) \cdot \rho_{H2} (T_{room}, P) \cdot \frac{v_{gp}^2}{2} = 1.538 \text{ psi} \\ \end{aligned}$$

$$\begin{split} \text{The total pressure at the exit of the check valve is then} \\ P_{exst} \coloneqq P_{op} + \Delta P_{gp} + \Delta P_{d} = 21.566 \text{ psi} \\ \text{the check valve is a circle seal H249T1-6PP-1} \\ Cv \coloneqq 10.3 \\ K \coloneqq 891 \cdot \frac{1}{im^4} \cdot \frac{ID_{gp}^{-4}}{Cv^2} = 6.283 \\ \Delta P \coloneqq K \cdot \rho_{H2} (T_{room}, P) \cdot \frac{v_{gp}^2}{2} = 1.3 \text{ psi} \\ \end{aligned}$$