

Co-op Summer 2012

Student: Jie Zhou Mentor: Jim Fochtman

Content

1. Magnetic Field Surface

2. BCAL Readout Cooling System

Magnetic Field Data

R (cm)	Z (cm)	B (G)	X (mm)	Y (mm)	Z (mm)
20	-330	51	0	200	-3300
40	-330	51	0	400	-3300
60	-330	49	0	600	-3300
			0		
280	-10	51	0	2800	-100
280	0	51	0	2800	0
280	10	51	0	2800	100
			0		
240	180	50	0	2400	1800
230	190	51	0	2300	1900
220	290	50	0	2200	2900
			0		
100	690	49	0	1000	6900
70	700	49	0	700	7000
20	710	49	0	200	7100

- Filter the data (50±1G)
- Fix the data
 - (3 axes and units)
- Plot the curve
- Separate the curve
- Fit the curve
- Copy the data in NX
- Revolve the curve

For The Chillers

50, 40, 30 Gauss

50 Gauss Field

50 Gauss Surface

Constructing surfaces for 5G, 400G, 500G, 8000G, 10000G are similar.

BCAL Readout Cooling System

- Working Pressure: 60 psi (designed)
- Working Temperature: 104°F (max)
- Material: Stainless Steel ASTM S30400
- Stress Value in Tension: 16.0 ksi (max)
- Maximum Flow: 8 GPM
- Flow Velocity: 2.72 ft/sec (designed)
- Pipe Size: NPS 1, Schedule No. 10s (1.315"(OD),
- 0.109"(wall))

Supports and Spacing

ASME B31.9-2011, "Building Service Piping" (921)

- Allowable stresses=0.2*tensile stress (min)
- Allowable overstress=1.8*yield strength (min)
- Stress due to support spacing shall "not exceed the basic allowable stress on the basis of a support span twice as great as the actual span"
- <u>The deflection based on "the allowable</u> <u>deflection of the pipe between supports shall not</u> <u>exceed the smaller of 0.25 in. or 15% of the</u> <u>outside diameter of the pipe"</u>

$$\sigma_{max} = \frac{Ma}{I} \frac{1-\beta}{K}$$

 Where M is the bending moment applied to the pipe; a is the outer radius of the pipe section; R is the radius of curvature of the beam axis

$$K = 1 - \frac{9}{10 + 12(tR/a^2)^2}$$
$$\beta = \frac{6}{5 + 6(tR/a^2)^2}$$

- To calculate the actual stress in extreme fiber,
- Concave side

$$\sigma_i = k_i \times \sigma$$

Convex side

$$\sigma_o = k_o \times \sigma$$

where the σ is the fictitious unit stress in corresponding fiber as computer by ordinary flexure formula for a straight beam.

E is Young's modulus, which is equal to 28,000 ksi. *P* is the concentrated load of the pipe and water with the valves. *L* the original length of the pipe. I is the minimum of the moment of inertia.

E is Young's modulus, which is equal to 28,000 ksi. *P* is the concentrated load of the pipe and water with the values. *L* the original length of the pipe.
I is the minimum of the moment of inertia.

Straight Pipe

Horizontal

- 80(upper),60(lower) Inches
- 2 supports (upper) hangers
 1 support (lower) U-bolt

Lo

Vertical

- 140 inches
- 2 supports (U-bolt)

Stress
$$\sigma_{max} = \frac{Mc}{I}$$
Deflection $\delta = \frac{Pl^3}{48EI}$ satisfy 2 verificationsongitudinal Stress $\sigma = \frac{PD}{2t}$ satisfies para. 902.3.2(d)

Thank you very much!