Updates on $\eta \to \gamma \gamma \pi^0$

Igal Jaeglé

Thomas Jefferson National Accelerator Facility

for the GlueX Collaboration

May 3, 2024

Table of contents

GAMS-2000 experiment and results

2 A2 experiment and results

Physics-Informed Neural Network

GAMS-2000 setup

Electromagnetic decays of light mesons - L.G. Lansberg

Fig. 6. The layout of GAMS-2000. The main unit of this apparatus is the hodoscope Čerenkov y-spectrometer, 48×32 matrix of total absorption lead-glass counters. Sa, Sa, Ha, Ha-scintillation counters and hodoscope of the m⁻-beam; LH₂-liquid hydrogen target; A, O, F₁₋₅, B-guard counters; F₄, -beam-killing system; TH hodoscope was not used in the $\gamma - \pi^2 \gamma \gamma$ search.

30 GeV π⁻ beam, ~ 3 × 10¹¹π⁻ on target
 π⁻p → η^(')n, 6 × 10⁵η produced via this process

GAMS-2000 results

Electromagnetic decays of light mesons - L.G. Lansberg

Fig. 5. (a) $\pi^+\pi^-\pi^0$ effective mass spectrum (68962 events), showing the 750-810 MeV ω -mass cut. (b) $\omega\gamma$ effective mass distribution (478 events). The curve is the result of a two-parameter fit: (the γ' peak is parametrized by a Gaussian of central mass 955 MeV and an instrumental width of 50 MeV) + (background represented by Monte-Carlo generated, acceptance corrected $\omega\pi^0$ phase space events from which one γ out of the four was randomly detected). (c) Distribution in $|\cos\vartheta|$ (corrected for acceptance) for 114 events between the arrows in (b). The solid line represents the background subtraction of 45 events obtained from the fit on (b).

• GAMS-2000 $\mathcal{B}(\eta' \to \omega \gamma) = 2.8 \pm 0.5\%$ • PDG-2022 $\mathcal{B}(\eta' \to \omega \gamma) = 2.52 \pm 0.07\%$

ijaegle@jlab.org (JLab)

GAMS-2000 results

Electromagnetic decays of light mesons - L.G. Lansberg

• GAMS-2000 $\mathcal{B}(\eta \to \gamma \gamma \pi^0) = 0.07 \pm 0.016\%$ • PDG-2022 $\mathcal{B}(\eta \to \gamma \gamma \pi^0) = 0.0255 \pm 0.022\%$ No $\omega \to \gamma \pi^0$ And no $\eta^{'} \to \gamma \omega$ with $\omega \to \gamma \pi^0$ are shown, $m_{\gamma \pi^0}$ cut applied?

$\eta^{'} \to \gamma \omega$

Is a good reference channel candidate

•
$$\mathcal{B}(\eta' \to \omega \gamma) = 2.52\%$$

• $\mathcal{B}(\omega \to \pi^0 \pi^+ \pi^-) = 89.2\%$
• $\mathcal{B}(\omega \to \gamma \pi^0) = 8.28\%$
• $\mathcal{B}(\pi^0 \to \gamma \gamma) = 98.823\%$
• $\mathcal{B}(\eta' \to \omega \gamma) = \mathcal{B}(\eta' \to \omega \gamma) \times \mathcal{B}(\omega \to \pi^0 \pi^+ \pi^-) \times \mathcal{B}(\pi^0 \to \gamma \gamma) = 2.247\%$
• $\mathcal{B}(\eta' \to \omega \gamma) = \mathcal{B}(\eta' \to \omega \gamma) \times \mathcal{B}(\omega \to \gamma \pi^0) \times \mathcal{B}(\pi^0 \to \gamma \gamma) = 0.204\%$
• Two decays can be reconstructed

• If
$$\epsilon(\eta' \to \gamma \omega [\to \gamma \pi^0]) = \epsilon(\eta \to \gamma \gamma \pi^0)$$
, $\frac{N(\eta' \to \gamma \omega [\to \gamma \pi 0])}{N((\eta \to \gamma \gamma \pi^0)} \sim 10$

In general, every rare decay studied should/must have a reference channel to validate the analysis

A2 experiment

Key numbers and facts: S. Prakhov et al. PRC 90, 025206 (2014)

- $6 \times 10^7 \eta$ produced in $\gamma p \rightarrow \eta p$ between threshold and 800 MeV
- 1200 $\eta \to \gamma \gamma \pi^0$ observed
- $\epsilon(\eta \to \gamma \gamma \pi^0)$ varies between 7 and 14 %
- $\frac{S}{B}$ varies between 30 and 50%
- Main backgrounds:
 - (a) $\gamma p \to \pi^0 \pi^0 p$, $\pi^0 \pi^0$ veto applied, cut applied similar to cuting π^0 -peak in $m_{\gamma\gamma}$
 - (b) $\eta \to \gamma \gamma$, peaking background produced mostly by shower splitting, elimated by a $m(\gamma \pi^0)$ cut
 - (c) $\eta \to \pi^0 \pi^0 \pi^0$, peaking background produced mostly by shower merging, strongly reduced by a cut on the shower effective radius

A2 yield extraction

May 3, 2024 8 / 19

GlueX/JEF Basic Selection Criteria

4 "photon" hypotheses DNeutral_Shower with $|t_{\gamma}^{\text{CAL}} - t_{\text{RF}}| \leq 2 \text{ ns}$ E_{cluster} > 250 MeV • χ^2_{test} to select best $\gamma\gamma\pi^0$ combination and discriminate other possible final states ($\pi^0\pi^0$, $\pi^0\eta$, $\eta\eta$, $\pi^0\eta'$, $\eta\eta'$, $\eta\eta'$, $\eta'\eta'$) • χ^2_{test} to select best track coplanar to $\gamma\gamma\pi^0$ • BCAL veto: allow only one "hadronic" shower and zero neutral shower both with $|t_{
m shower}^{
m BCAL} - t_{
m RF}| \le 6$ ns • $E_{\gamma} \geq 8.3 \text{ GeV}$ After A2- $\pi^0 \pi^0$ -veto for MC simu $\pi^0 \pi^0$ background As is $n \rightarrow \gamma \gamma \pi^0$ MC signal Data 3000 8000 n_{yn}s [GeV/*c*²] df = 19 (Events # 4000 10 0.5 0.4 0.8 1.5 m_{yy} [GeV/c²] m_{,//z⁰} [GeV/c²] m,,,,,,0 [GeV/c2] A2 veto not applicable as is

GlueX/JEF Basic Selection Criteria

$\eta \to \gamma \gamma$ background

Two sources:

- γ conversion mostly removed by TOF veto
- Shower splitting, latest Island Algorithm strongly reduced the splitting compared to Default Algorithm

TOF veto removed for 2017-01 run period MC simulation:

- \sim 50% of the $\eta \rightarrow \gamma \gamma$ background
- \sim 30% of the $\eta \rightarrow \gamma \gamma \pi^0$ signal

Splitting:

- $\bullet\,$ Default Algorithm: \sim 0.04 % chance of splitting resulting to half of the peaking $\eta\to\gamma\gamma$ background
- Island Algorithm: ? % chance of splitting resulting to ? of the peaking $\eta \to \gamma \gamma$ background

Kinematic fit is making the mass peak

Physics-Informed Neural Network (PINN)

Based on P. Feichtinger et al. EPJC 82 (2022) 2, 121 and D. Lersch et al. 35 features or inputs:

- Process thrust, E_{γ} , $m_{\gamma\gamma\gamma\gamma}$, and
- For each FCAL showers: SumV, SumU, E1E9, E5E29, cluster size in block number unit

- 2 hidden layers with 70 and 35 neurons, respectively activated by RELU
- 1 sigmaoid output

Training done into two steps: pre-training with BCE & final training with PINN per $m^i_{\gamma\gamma}$ -slice and with a customized loss function

Loss and accuracy

Customized loss function compares signal with overall statistical uncertainty in short $\frac{\sqrt{S+B}}{S}$

• Slice size, $2\sigma - m_{\gamma\gamma}^{i} \le m_{\gamma\gamma}^{i} \le 2\sigma + m_{\gamma\gamma}^{i}$

- Trainings for every other slices, 5σ step
- Net architecture, activation function, loss rate, and number of epoch not tune yet via the HyPerparameter Optimization technique
- Loss function is also not optimized yet, different class of Figure-Of-Merit can be tested

Goal find set of cuts to get the smallest $\frac{\sqrt{S+B}}{S}$ value or highest sensitivity

ijaegle@jlab.org (JLab)

Pre-training BCE

Results after the BCE pre-training

- 39.31M $\gamma p \rightarrow \eta p$ with $\eta \rightarrow \gamma \gamma$, labeled as background
- 32.57M $\gamma p \rightarrow \eta p$ with $\eta \rightarrow \pi^0 \pi^0 \pi^0$, labeled as background
- 10M $\gamma p \rightarrow \eta p$ with $\eta \rightarrow \gamma \gamma \pi^0$, labeled as signal

- Black line is the optimal threshold or smallest $\frac{\sqrt{S+B}}{S}$ value
- BCE net output is in average 0.25 ± 0.1

BCE model used as starting point for PINN training

ijaegle@jlab.org (JLab)

PINN

Results after the PINN training

- 39.31M $\gamma p \rightarrow \eta p$ with $\eta \rightarrow \gamma \gamma$, labeled as background
- 32.57M $\gamma p \rightarrow \eta p$ with $\eta \rightarrow \pi^0 \pi^0 \pi^0$, labeled as background
- 10M $\gamma p \rightarrow \eta p$ with $\eta \rightarrow \gamma \gamma \pi^0$, labeled as signal

- Black line is the optimal threshold or smallest $\frac{\sqrt{S+B}}{S}$ value
- PINN output is 0.4 ± 0.01

Use one value for all masses

Testing samples

- PINN starts after the basic selection criteria discribed in slide 9
- Use reconstructed variables
- No TOF veto used, $\eta\to\gamma\gamma$ background suppress by an order of magnitude w/o any cuts on $m_{\gamma\gamma}$
- Working on including $\pi^0\pi^0$ and ω backgrounds

FOM comparison

Between the HCC, BCE, and PINN:

Ideally, PINN significance >> HCC significance and PINN systematic error (not calculated yet) \sim HCC systematic error (also not calculated yet). But, it is not always the case.

ijaegle@jlab.org (JLab)

Updates on $\eta \to \gamma \gamma \pi^0$

May 3, 2024 17 / 19

GlueX/JEF Advance Selection Criteria

Basic selection criteria applied

- TOF-veto applied
- Only 4 FCAL clusters
- CL > 0.01%
- One photon in the insert

As is

- $N_{\eta \to \gamma \gamma \pi^0}^{\text{expected}} \sim 550 \text{ for } 53 \text{ pb}^{-1}$ $N^{\text{fit}} \sim \sim 100 \text{ for } 52 \text{ s}^{-1}$ $_{\eta
 ightarrow \gamma \gamma \pi^{0}}^{
 m fit}$ ~100 for 53 pb⁻¹
- If true, $\mathcal{B} \sim 2.7 \times 10^{-4}/5$

ijaegle@jlab.org (JLab)

May 3, 2024 18 / 19

Conclusion

Reviewed GAMS-2000 and A2 results

- GAMS-2000 results on $\eta \rightarrow \gamma \gamma \pi^0$ are completly off from the world average
- A2 results are the best on the market but so far were not reproduced

 $\mathsf{GlueX}/\mathsf{JEF}\ \mathsf{status}$

- A2-cuts are not working as is
- With HCC, GlueX/JEF S/B much worse than A2!
- As is we are leading toward an UL

PINN with customized loss function

- Require to understand fairly well the backgrounds
- Works fairly well on reduced background test samples, reduced $\eta\to\gamma\gamma$ peaking background by an order of magnitude
- Start with a minimum set of HCC, this miminum has not been determined yet
- Significance and systematic errors must be competitive compared to HCC to be usuable
- Less complicate model will also be explored