FCAL Update

- Energy resolution in data
- FCAL geometry
- Inefficiencies due to poorly-determined gain constants
- Time slewing and timing resolution

FCAL Energy Resolution

- Gain balancing done by Adesh (plots on the next page)
 - corrected block size
 - using only photons with 1.0 < E < 1.5 GeV
 - "floor term" still appears too high
- Possible issues:
 - position resolution begins to contribute at high photon energies (η should be better)
 - poor background assumptions in fitting π^0 peak
 - many of Adesh's fits used a linear background over a very restricted range — OK for getting peak position but not width
 - other: the resolution just isn't as good as we expected... why?
- May need to resort to different (cleaner) event sample to validate MC resolution

FCAL Energy Resolution

M. R. Shepherd GlueX Calorimetry Meeting September 7, 2017

U DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences Bloomington

FCAL Energy Resolution

1.40 < Shower E. [GeV] < 1.50

Ш

Bloomington

September 7, 2017

FCAL Geometry Updates

- Key change: the unit cell in the FCAL was assumed to be 4.000 cm; in reality "as built" it is 4.016 cm
 - affects both data reconstruction and MC
 - change in <u>DFCALGeometry.cc</u> mandates a change of gain constants as well
 - not committed yet
- MC modifications (all committed?):
 - incorporate change to unit cell size
 - add material for upstream plate and straps
 - add material for plastic light tight cover
 - add light guide sensitive volume (studies with data suggest MIPs that hit the light guide have different energy and timing response)

Data MC Comparison

- Reconstruct events of the type:
 - $\gamma p \rightarrow \omega p$ where $\omega \rightarrow \pi^+ \pi^- \pi^0$
 - select with a kinematic fit that includes π^0 mass constraint and 5% cut on the confidence level
- "Tag" showers produced by the π^0 decay as true photons
 - use these to study calorimeter performance
 - avoids MIP/splitoff contamination
- Future: relax π^0 mass constraint and do data/MC comparison of π^0 width

DEPARTMENT OF PHYSICS INDIANA UNIVERSITY

Bloomington

Photon Locations

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

from ccdb (thanks Mike Staib)

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY College of Arts and Sciences Bloomington M. R. Shepherd GlueX Calorimetry Meeting September 7, 2017

Channel #

FCAL Gains

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

Ш

M. R. Shepherd GlueX Calorimetry Meeting September 7, 2017

FCAL Timing

- Current algorithm:
 - create "clusters" in 2D
 - set cluster time to time of most energetic hit
 - create a "shower" from each cluster by translating z-coordinate along flight path to a depth determined by cluster energy
 - apply energy-dependent timing correction to shower (due to effective speed of light in the block)
- Cross check the timing correction with true photons:
 - predicted time = RF time at target center + (distance to depth-corrected shower center) / c
 - check existing correction: shower time predicted time
 - derive a new correction: cluster time predicted time

Timing Corrections (Data)

U DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY College of Arts and Sciences Bloomington M. R. Shepherd GlueX Calorimetry Meeting September 7, 2017

Timing Corrections (MC)

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

Ш

Time Resolution (Data)

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY

Bloomington

College of Arts and Sciences

- Standard algorithm (hollow circles) sets cluster time to time of maximum energy hit
- Improvement (solid circles) can be made by using energy weighted average of all hits in cluster
- Propose to implement this change first, then revise average time correction
- MC resolution has no energy dependence and is about 420 ps

Summary and Other Notes

- Energy resolution: emphasis has been on understanding it in data
 - are the techniques for measuring it sound? why is the floor term so large?
 - degrading resolution in MC is relatively straightforward
- Hit (block) efficiency:
 - in addition to dead channels from LED runs may have effectively dead channels due to poorly determined gain constants
- Geometry:
 - would like to correct/examine gain constants for revised geometry
 - push changes to ccdb and block size simultaneously
 - long term: restructure FCAL geometry class
- Timing:
 - improve time resolution by using energy-weighted time
 - implement new energy-dependent time correction