Polarization Update

Justin Stevens August 16, 2016

$$\begin{array}{rcl} & & Vector \ meson \ angular \ distributions \\ & & & \\ &$$

- * Integrate angular distributions over θ
- * The simplified model I've been using in previous studies to extract the polarization values assumes

$$\rho_{1-1}^{1} = -\text{Im}\rho_{1-1}^{2} = 0.5$$
$$\Sigma_{h}^{d} = \Sigma = 1 \qquad \Sigma_{h}^{e} = 0$$

* And all other SDMEs are small enough to be neglected, consistent with old SLAC data

Nominal Σ asymmetry

 $W_h^L(\phi, \Phi) = \frac{1}{2\pi} \left[1 - P_\gamma \Sigma_h^d \cos 2\left(\Phi - \phi\right) - P_\gamma \Sigma_h^e \cos 2\left(\Phi + \phi\right) \right]$

Run 11366-11555: 8.4 $< E_{\chi} < 9$ GeV

New asymmetry term

$$W_h^L(\phi, \Phi) = \frac{1}{2\pi} \left[1 - P_\gamma \Sigma_h^d \cos 2\left(\Phi - \phi\right) - P_\gamma \Sigma_h^e \cos 2\left(\Phi + \phi\right) \right]$$

 $P\Sigma_h^e \sim -0.02$

Run 11366-11555: 8.4 < E_γ < 9 GeV

p asymmetries: Runs 11366-11555

Amorphous

PERP

PARA

PERP+PARA

p asymmetries: cut comparison

Nominal Cuts

Tighter exclusivity cuts **Mike Staib** # Unused Tracks # Unused Tracks $8.4 < E_{\chi} < 9 \text{ GeV}$ 3.5 10' 2.5 1.5 0.5 0.2 0.4 0.6 0.8 1.2 1.6 1.8 1.4 Unused Shower Energy (GeV) Select more "exclusive" events by requiring no unused tracks or showers Unused Shower Energy (GeV) $3 < E_{\chi} < 5 \text{ GeV}$ $5 < E_{\chi} < 7 \text{ GeV}$ 10_□ # Unused Tracks # Unused Tracks 9₽ 10¹ 10' Unused Shower Energy (GeV) Unused Shower Energy (GeV)

Δ

6

0.3

0.2

0.

-0.

Comparison of TPOL and π^0

* Latest TPOL values from Mike Dugger (preliminary)

* Currently running more triplet MC to provide finer binning in beam energy

Summary

- * Small contribution to ρ angular distributions from cos $2(\Phi + \phi)$ term. Indicating $\Sigma_{\rho} < 1$ as expected from previous data
- Several systematic checks on event selection, etc. which all show ~5% asymmetry at low energy
- * Comparison of π⁰ asymmetry with TPOL polarization show good agreement in coherent peak
- Propose to move forward with TPOL polarization values for user analyses (limited to the coherent peak region) after more TPOL MC statistics are complete

Backup

- * No kinematic fit
- * 50 < Vertex Z < 78 cm
- $|t_{beam} t_p| < 2.004$
- # Proton dE/dx
- **₩** |MM2| < 0.02
- * Missing Energy
- $* 0.6 < M_{\pi\pi} < 0.88$

p asymmetry: method

- Subtract accidentals from ϕ -dependent yield
- Fit to PERP and PARA yields separately
- Fit to asymmetry to cancel acceptance effects
- Measure both in bins of E_{χ} (next slide)

Run 11366-11555: $3 < E_{\chi} < 5$ GeV

PARA

Φ

|| Polarization

 π

π^0 asymmetry: method

- Subtract accidentals from ϕ -dependent yield
- Fit to PERP and PARA yields separately
- Fit to asymmetry to cancel acceptance effects
- Measure both in bins of E_{χ} (next slide)

PERP

PARA

-150 -100 -50

0

50 100

150

Φ

Run 11366-11555: 3 < E_γ < 5 GeV

Comparison of accidentals

Runs 11366-11555

Runs 11569-11663