

Recent Progress of Solid-State Photomultipliers at RMD and Status for PrimEx

• Erik Bjorn Johnson, Staff Scientist

July 31, 2012

Dynasil Family of Companies

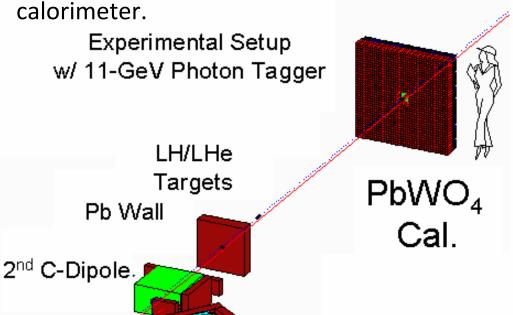
Gamma imaging probes and Lead paint analyzers (Watertown, MA)

Fused silica optics for lasers (West Berlin, NJ)

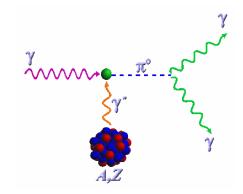
High-performance synthetic crystals and arrays for PET/CT/SPECT and Homeland Security (Margate, United Kingdom)

High performance reflective coatings (Ithaca, NY)

Optical gratings and filters (Ayer, MA)



Contract research & development (Watertown, MA)

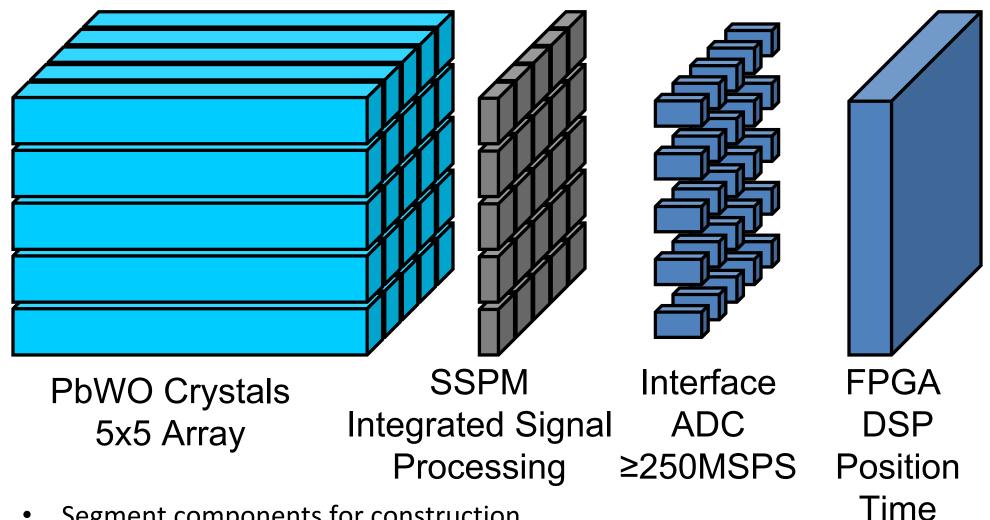


PRIMEX Calorimeter Readout

- Utilizing the Jefferson Lab Upgrade.
- Provide direct measurements at low energies of parameters of Quantum Chromodynamics (QCD) using η and η' lifetime measurements.
- Primakoff effect production of neutral mesons, which decay.
- Need to measure position and energy deposition in

Trig. FP Detectors

- About 1% energy resolution at 4.5 GeV
- Replace lead glass with smaller PbWO₄
- Cost effective readout will make this possible.



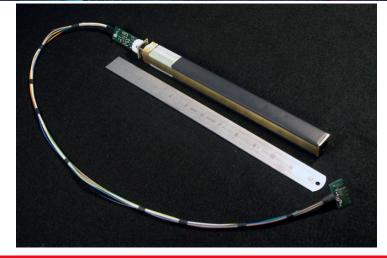
Rad

Bremst. 1st C-Dipole

Building the Calorimeter

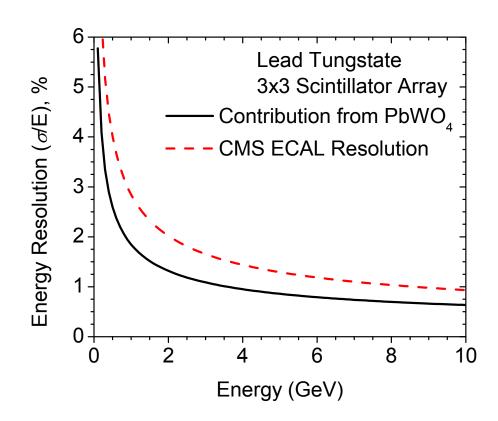
- Segment components for construction.
- Integrate electronics at front-end.

Pulse Height


The PRIMEX PbWO₄ Calorimeter

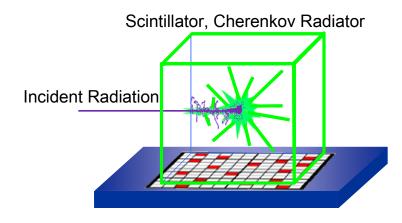
- Planned Calorimeter
 - 60 x 60 element array of PbWO₄
 - <1% energy resolution for 4.5 GeV</p>
 - ~ 1 mm position resolution
 - 2.125 x 2.125 x 21.5 cm³
 - PbWO₄ Parameters (ρ = 8.3 g/cm³)

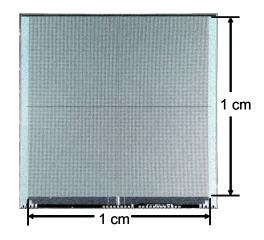
Reference	Decay Time	Light Yield (0 °C)
R Mao NIMA 537, 406- 410 (2005)	30 ns	140 photons/MeV
M. Ippolitov Rad Meas. 38, 813-816 (2004)	93 ns	120 photons/MeV
CERN/LHCC 2006-001 CMS TDR 8.1 2 February 2006	16 ns	150 photons/MeV

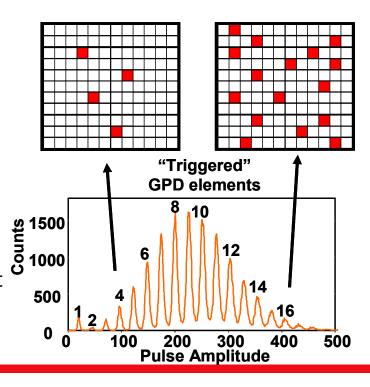


Lead Tungstate

- CMS experiment at CERN
 - Lead Tungstate based calorimeter (ECAL)
 - Use Hamamatsu APDs
 - Extract APD expected performance from measured resolution.
- PRIMEX upgrade
 - Replace lead glass.
 - Higher density of scintillators.
 - To be operated at 0 C.
- Lead Tungstate
 - Decay Time: ~ 16 ns
 - Light yield: 151 photons/MeV at 0 C.
 - Peak emission: 480 nm

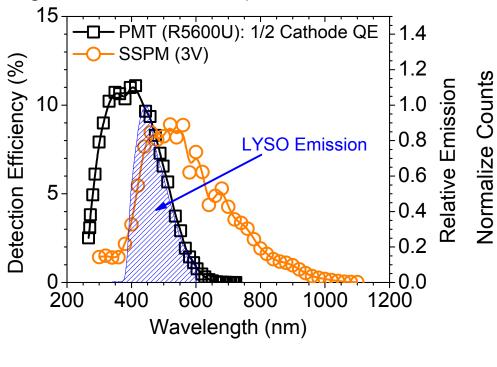


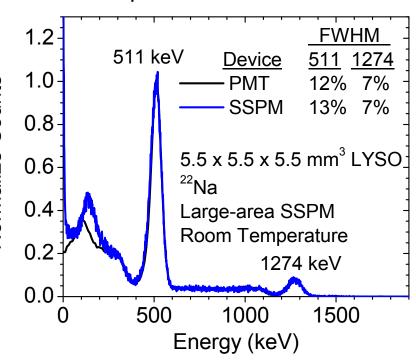

Status of RMD Solid-State Photomultipliers



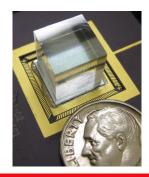
Solid-State Photomultipliers

- Solid-state photomultiplier (SSPM) is an array of photodiodes read out in parallel.
 - Active dosimeters/ area monitors
 - Gamma-ray
 - Charged-particle
 - Neutrons
 - Spectrometry
 - Positioning and Imaging
 - PET, SPECT, Optical tomography
- Each photodiode has a gain of 10⁶ for single photon events.
- Number of diodes triggered is proportional to the incident light flash.
- Compact and phototube like response.



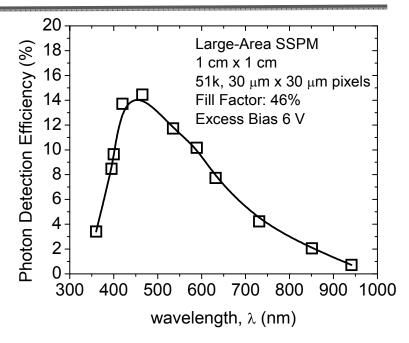


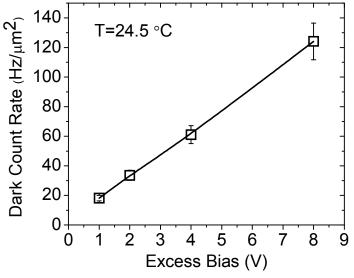
Gamma Ray Spectrum


To compare with a PMT, LYSO is a good match for both photodetectors.

The large-area SSPM is a viable replacement for a PMT.

 SSPM estimated contribution to the noise at 511 keV is roughly 4-5%.

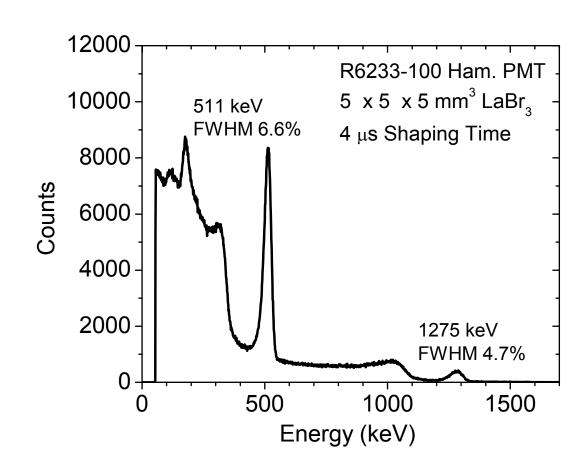




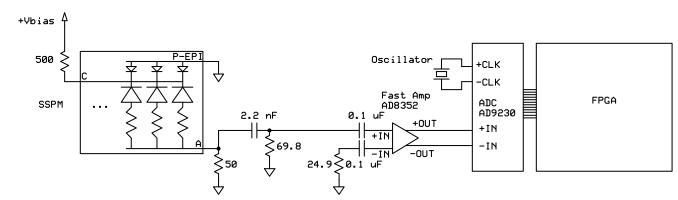
PDE and Dark Count Rate

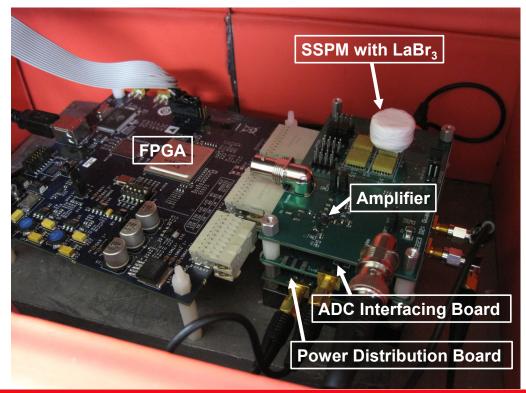
- The photodetection efficiency product:
 - Quantum efficiency
 - Geiger probability: @ $V_x = 6 V$, ~60%
 - Fill Factor: 46%
- Dark Current
 - Thermally generated events
 - No after pulsing or cross talk included.
 - Schockley-Read-Hall (Maxwell-Boltzmann) dependence on temperature

$$DCR = 2.2514 \frac{\text{Hz}}{\text{V}} \cdot V_x \cdot e^{\frac{1.11 \text{eV}}{2k \cdot 273.15 \text{K}}} \cdot e^{\frac{-1.11 \text{eV}}{2kT}}$$



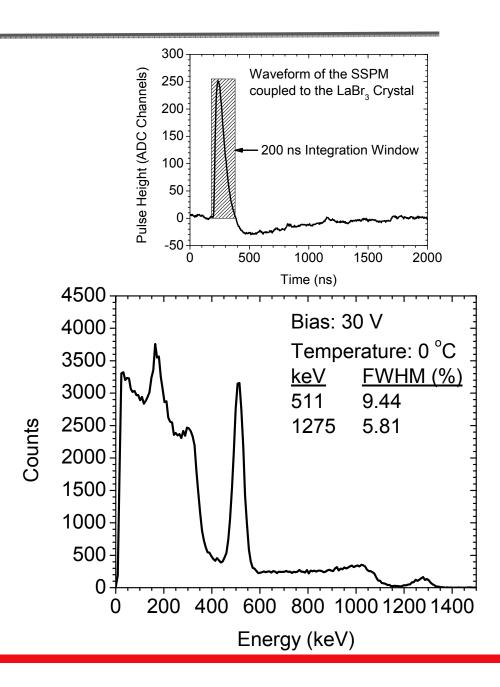
LaBr₂ on PMT


- No readily available high-energy gamma ray source.
- Used a high-quality, fast, bright scintillator.
 - Lanthanum Bromide.
 - ~60 photons/keV
 - Decay Time: 16 ns
- Evaluate with PMT
 - Optically coupled with grease.
 - Crystal in aluminum can.
 - Super bialkili cathode
 - QE_{Fff}: ~ 32.8%
- Scintillator Contribution:
 - 511 keV: 6.1% (FWHM)
 - 1275 keV: 4.4% (FWHM)



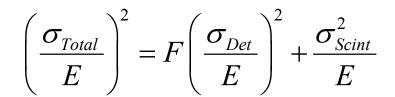
Readout and Determining Response

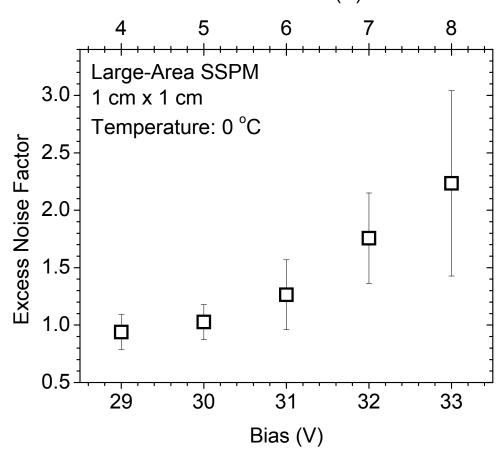
- Large gain from the SSPM allows for a very simple readout COTS components.
- Module was evaluated and works well.
- Fast electronic components are necessary for extracting the physics information.
 - 2.2 GHz Differential Amp
 - 250 MSPS, 12-bit ADC
- Evaluation components were built and tested at 0 °C.
- What to calculate how it will respond in the calorimeter.
 - No high energy gamma source available.
 - Use LaBr₃ and a ²²Na test source.
 - Used PMT to determine contribution to noise from scintillator.



12

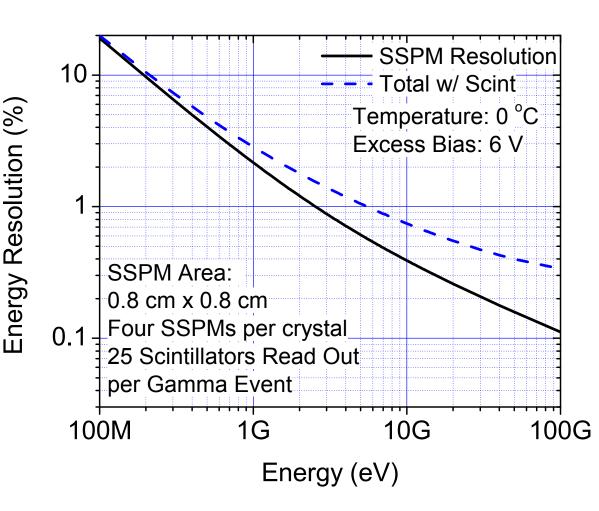
SSPM Spectra


- Generated spectrum as it will be done in the PRIMEX experiment.
- Collect wave forms and process.
- Use a 200 ns integration window.
- QE_{Fff}: 11%
- Find maximum.
 - Capture a waveform over 8 μs.
 - Step over waveform with 200 ns window.
 - Find point with largest integration value.
 - Generate histogram of maximum values.
- Measurements:
 - Temperature: 0 °C
 - Bias: 29, 30, 31, 32, 33 V
 - Optically coupled using grease.
 - Exposed with gammas from ²²Na.

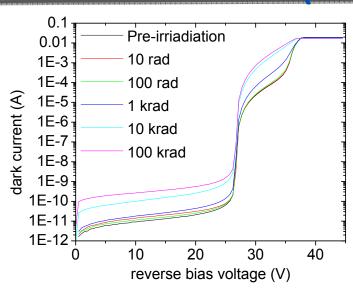


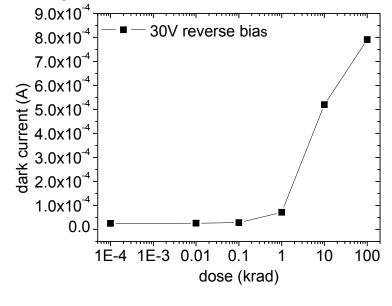
Excess Noise Factor

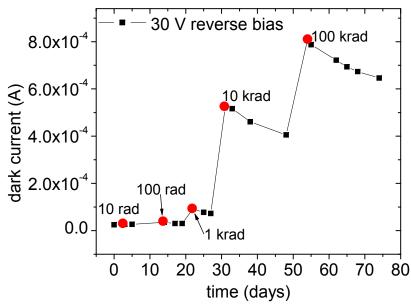
- Know quantities:
 - PDE and DCR from SSPM
 - Scintillator response
- Scaling factor, F, is used to account for excess noise:
 - After pulsing
 - Cross talk
- Systematic Error:
 - Light yield
 - PMT response
 - Varied assumptions and used average.
- At an excess bias of 6 V (P_g ~60%), the excess noise factor is 1.26.
- F of 2 at $V_x = 7.5 \text{ V, P}_g \sim 70\%$



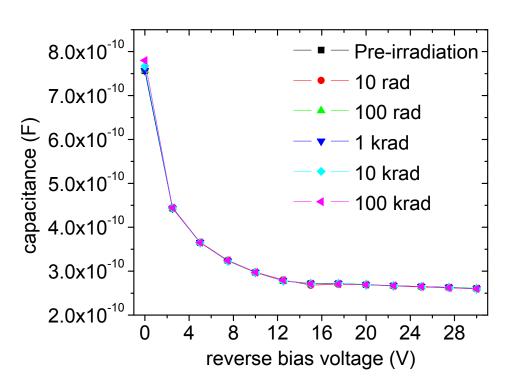
Excess Bias (V)

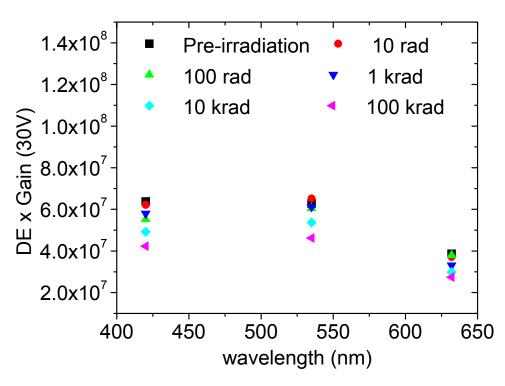

Calorimeter Performance


- Calorimeter geometry:
 - 2.05 cm x 2.05 cm crystals
 - Use 4, 0.8 cm x 0.8 cm SSPM.
 - Accounting for packaging
- Physics:
 - High energy gamma ray
 - Electron cloud
 - 5 x 5 scintillator array is used for each gamma ray interaction
- SSPM performance:
 - Include PDE, DCR, F
 - Time response: pixels may trigger more than once
 - Scintillator light yield and decay
- Calorimeter performance:
 - Fold in scintillator response based on CMS measurements
 - Scintillator is the limiting factor
 - Speculation at this point: Needs to be measured in high energy gamma field

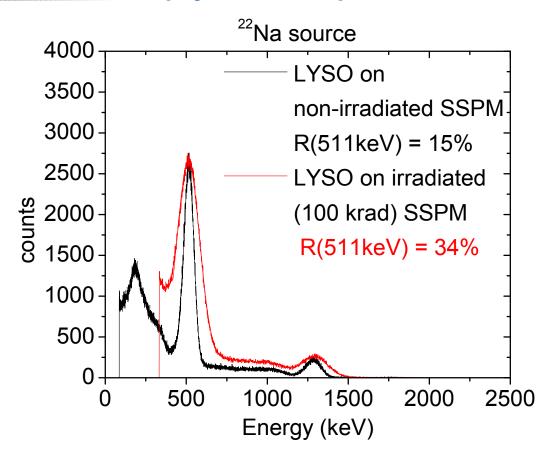


Radiation Hardness (Dark Current)

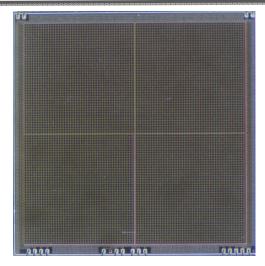


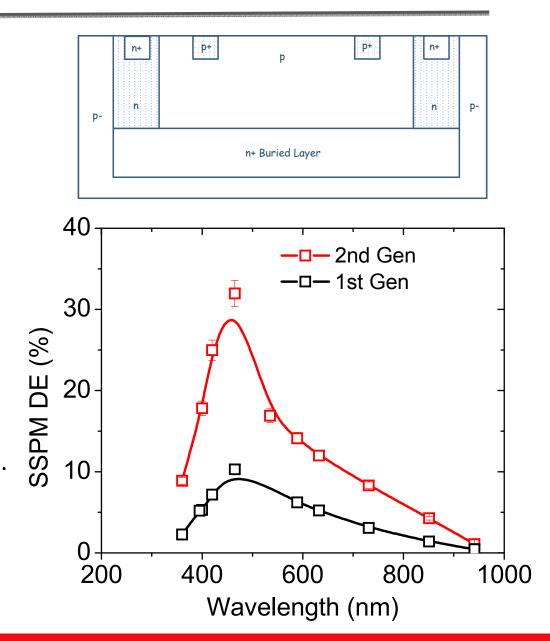

- Exposure to 200 MeV protons.
 - Surface charge is built up.
 - Bulk defects are increased.
 - The build up of defects from photons will be slower for an equivalent flux.
- Like all silicon devices, dark current increases.

Radiation Hardness (Gain)

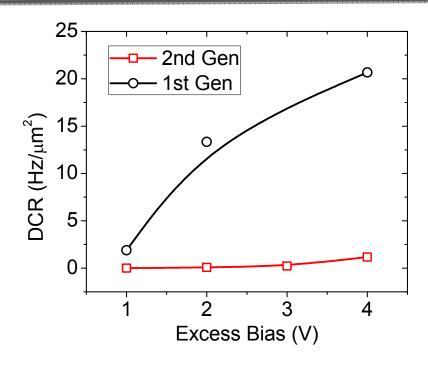


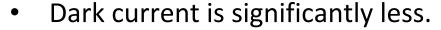
- Capacitance is directly proportional to the gain associated with each diode.
- Complete detector capacitance shows no change as a function of dose.
- A decrease in the DE × Gain is observed with a slight difference as a function of wavelength, due to recombination effects.

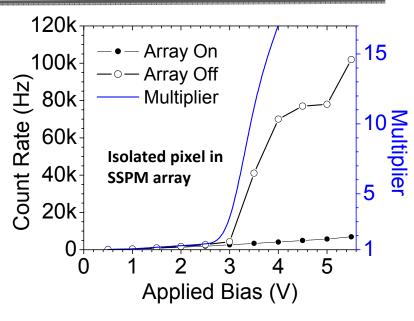

Radiation Hardness (Spectrum)

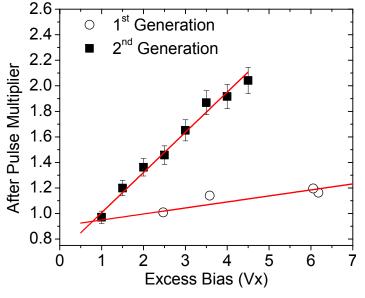

- If JLab is interested in effects due to gamma rays,
 - We are also.
 - We would be more motivated to conduct those measurements.
 - But we would most like conduct measurements on the next generation of devices.
- We do not have a dependence of the energy resolution as a function of dose.

Next Generation of SSPM

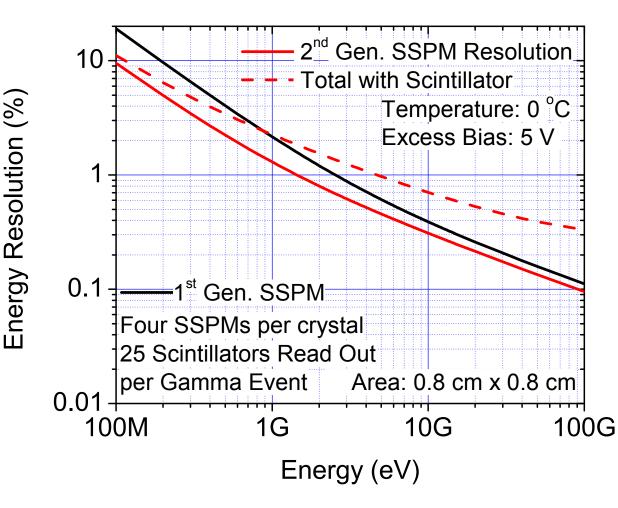



- Small feature size CMOS technology.
- New GPD pixel different from traditional design.
 - Using buried layer to define Geiger junction, charge collection region depletes upward toward the surface.
- 3.9 mm × 3.9 mm SSPM fabricated with 90 × 90 array of 37 μm pixels.



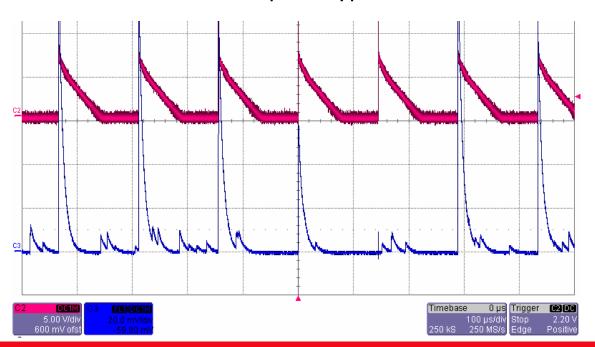

SSPM Noise Terms

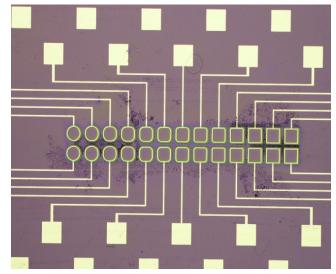
- A measure of the cross talk multiplier is less than 2 for a reasonable range of operation.
- The after pulsing has increased; possibly due to the higher operating bias.

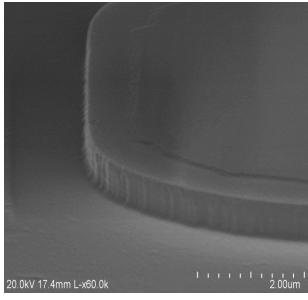


Calorimeter Performance

- Replace 1st Generation SSPM with 2nd Generation.
 - Use same active area.
 - Improved fill factor.
 - Lower dark current.
 - Significantly higher detection efficiency.
 - Overestimate the excess noise.
 - Use F = 2 compared to 1.26
- Energy resolution improves dramatically.
- Expands physics scope of the calorimeter for lower energy processes.

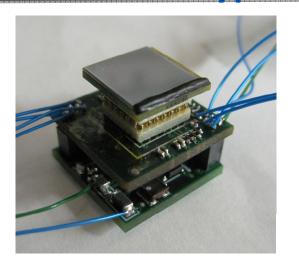



Large-area prototypes are expected in 6 to 12 months (maybe).



AlGaAs Solid-State Photomultipliers

- DNDO funded program has ended.
- Collaboration with:
 - University of Michigan (Mark Hammig).
 - University of Virginia (Joe Campbell).
- Wide-band-gap semiconductor epitaxy.
- Fabricated diodes and demonstrated a high-gain response to photons.
- The schedule for SSPM prototypes is not determined.



Status of PrimEx Calorimeter Readout

Readout Prototypes

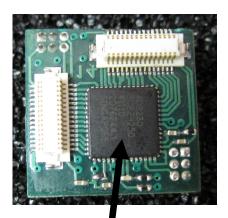
Amp Board

Socket (obsolete)

FRONT

Back

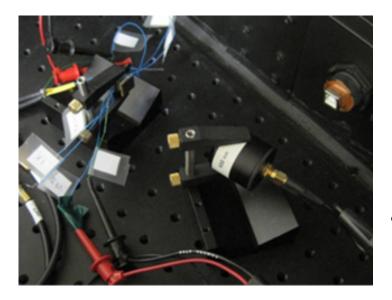
Amp Back

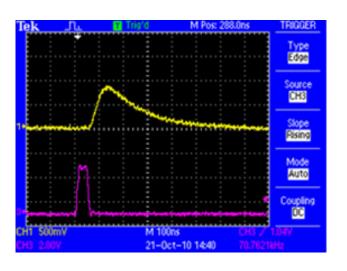

Amp Board

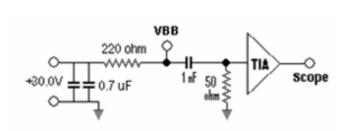
2.2 GHz Diff. Amp (AD8352)

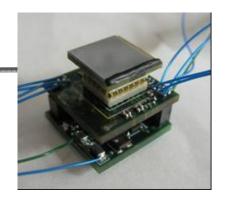
- Three layers.
- Design, layout and fabrication by Don Lydon (UMass).

ADC Board

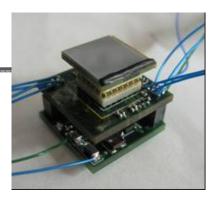

Dig. Pot (MAX5483)

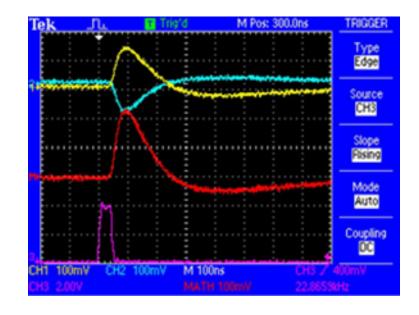

DC/DC (LT1615)


12-bit, 250-MSPS ADC (AD9230)



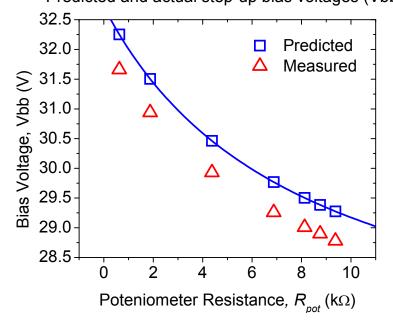
SSPM Connection

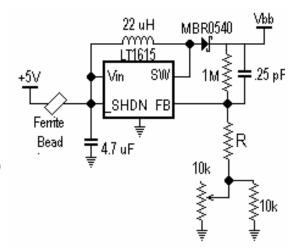


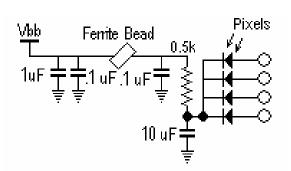

- Evaluated each component of the modular readout boards.
- SSPM connections were tested.
- Simple trans-impedance amp and a light pulse from an LED was used.
- Each photodetector on the device is connected properly.

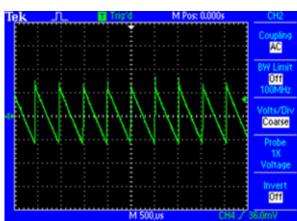
Fast Amplifier

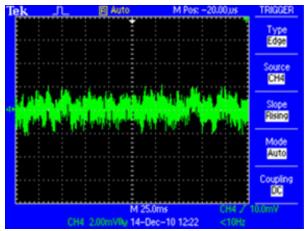
- The fast amplifier used is a 2.2 GHz differential amplifier.
- The signal from the SSPM is readout after the amplifier.
- The output looks good.

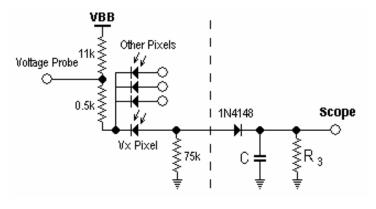


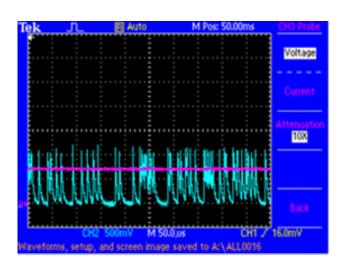


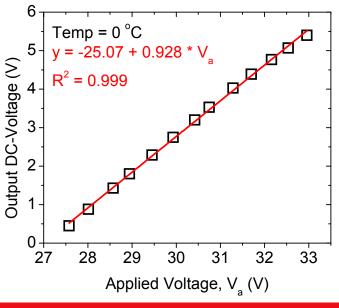

Boost Converter

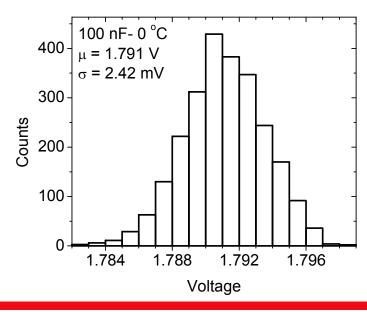

- A DC/DC boost converter is used to power the SSPM.
- The voltage will be controlled through an interface through the FPGA.
- Each circuit will need to be calibrated.
- Filtering is used to remove the switching noise from the converter.


Predicted and actual step-up bias voltages (Vbb)

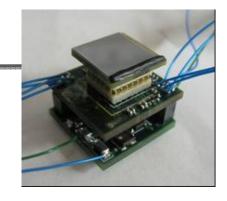


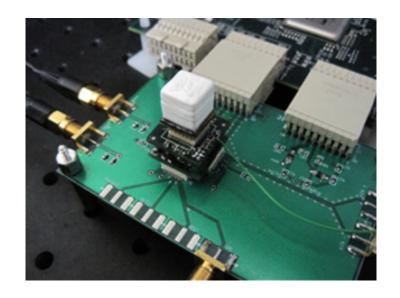


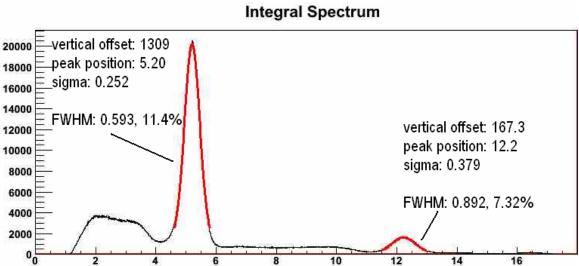



Excess Bias Monitor

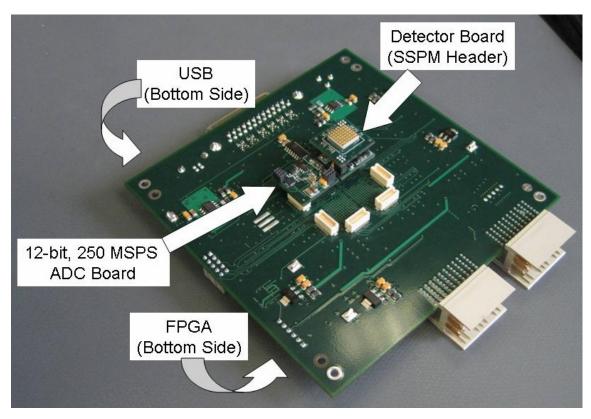
- A large isolated pixel is used to monitor the excess bias.
- The voltage drop across the diode is held by a slow RC circuit.
- The dark current is sufficiently large to keep the voltage stable.
- The response is linear will applied bias over a 5 V swing.
- The offset is accurate to within 2.5 mV.







Complete Functionality

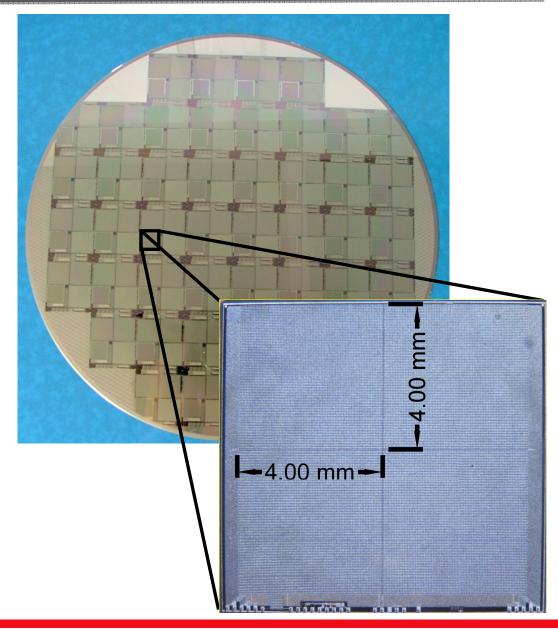


- Coupled to an FPGA evaluation board.
- Placed a LYSO crystal on the SSPM and powered the device through the boost converter.
- The 12-bit word from the ADC was sent into the FPGA and processed.
- The code calculated an integral for each gamma event from a ²²Na source.
- The integrals were saved for a file and a histogram was generated, reproducing the expected results.

Existing Hardware: Four Channel Device

Design and layout by Don Lydon (UMass)

- Based on FPGA evaluation board from Analog Devices for ADCs.
- USB 2.0.
- Connect up four channels.
- Xilinx Virtex 4 (XC4VFX20-10FFG672C)
- Four channels for gain monitors.
 - Voltage followers.
 - ADC with MUX (AD7888)
- 12-channel I/O through D-sub connection.



1st Generation SSPMs Status Review and Work Plan

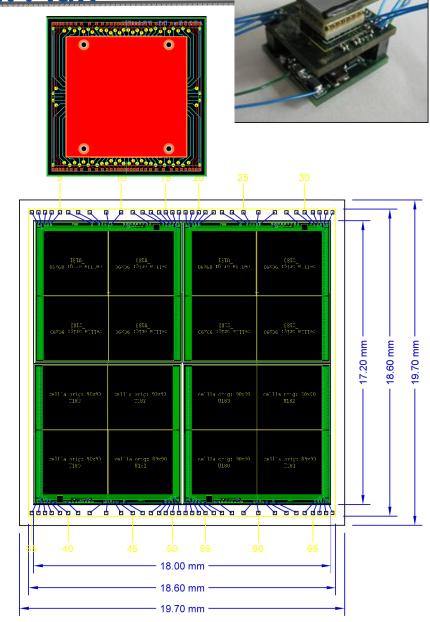
- Conducted Engineering Run.
 - 6 wafers.
 - 44 reticles printed per wafer.
 - 264 PrimEx prototype die have been fabricated.
 - Explored a post-processing option to improve the QE.

Status:

- Packaged 12 die into large ceramic packages.
- Simple resistive load test, showed 3 die not functional.
- Previous yields have been closer to 100%.
- Packaging or post processing on the die might be the issue.
- V_{BD} = 27.18 ± 0.01 V (3 die).
- $-I_d(V_x = 1 V) = 10 \pm 1 Hz/\mu m^2$

Readout Status Review and Work Plan

SSPM Package

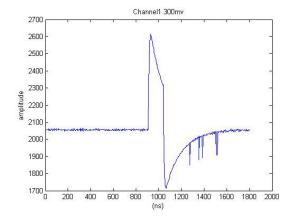

- Design and layout complete.
 - FR4 PCB substrate.
 - 2 alternating board-to-board connectors.
- Bonding wire protection considerations.
 - Epoxy boarder.
 - Frame.
- Requesting quote and approval.
- Submission soon.

Amplifier Board

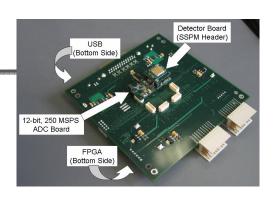
- Slight redesign to account for change in header.
- Add in circuitry for gain monitoring.
- Change board to board connections to ADC board.
- Design and layout are being worked on at this point.
- Quick-turn readout board for new SSPM package.
- Considering a quick-turn board using existing headers.
- Considering developing a prototype board for a low input impedence amplifier for faster recovery.
- Increase size to 19.7 mm x 19.7 mm.

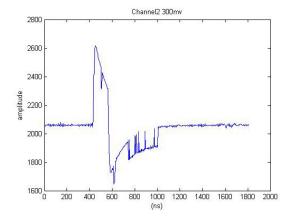
ADC Board

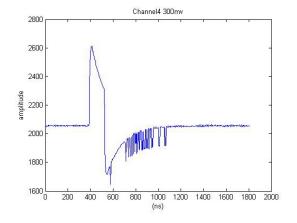
- Design and layout for better board to board connectors.
- Increase size to 19.7 mm x 19.7 mm.

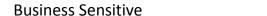



32




FPGA DAQ Status Review and Work Plan


- Development of HDL code for data capture.
- Started with the code for the single channel board.
- Clock management is now done through the FPGA.
- The signal baseline should be at VCC/2.
 - VCC is the input voltage to the ADC.
 - Baseline should be around 2048 ADC channels.
- Channels are not synchronized at this point, but each channel is responsive.
- Work Plan:
 - Clean up the data capture.
 - Implement VCM (common mode) correction, SPI interface with ADC.
 - Synchronize all four channels.
 - Develop prototype code for bias control; digital potentiometer on ADC Board.
 - Develop prototype code for data capture of gain monitor.



Testing at Jefferson Lab

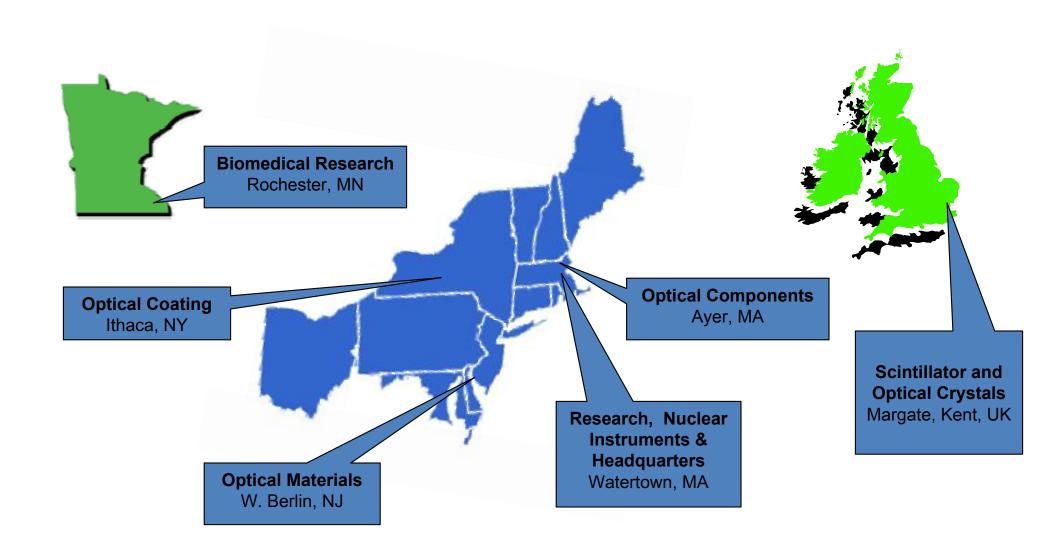
- Test with four PbWO₄ crystals.
 - Size should be close to actual calorimeter crystals.
 - Validate the expectation of the crystals.
- Beam conditions:
 - 100+ MeV photons.
 - Multiple beam energies; should characterize with no less than five different energies.
- Default: Measure waveforms.
- Ideal: Measure energy and time.
- Goal: Generate a plot of the energy resolution as a function of energy deposited.
- Timing:
 - Need a reference time.
 - Implement code to capture reference time signal and process.

Schedule

Work Task	30-Jul	6-Aug	13-Aug	20-Aug	27-Aug	3-Sep	10-Sep	17-Sep	24-Sep	1-Oct	8-Oct	15-Oct	22-Oct	29-Oct
1st Gen. SSPM		<u></u>						11 000						
Eval.														
Dice														
Package Dev.														
Review														
Fabrication														
Package														
Amp Dev.														
Schematic														
Layout														
Review														
Fabrication														
ADC Dev.														
Schematic														
Layout														
Review														
Fabrication														
Amp Eval. Boards														
Test Multiple Amps														
Quick-Turn Low-Z Board														
Eval. Low-Z Board														
Quick-Turn SSPM Pack.														
Eval. SSPM Pack.														
FPGA Code Dev.														
1-channel Data Capture														
VCM enable														
Synch 4-channels														
Bias Control														
Gain Mon. Capture														
User Interfacing														
Integral and Timing														
Temp. Feedback Enable														
GUI: Data Monitor														
GUI: Bias Control														
GUI: Data Control														
Jlab Test Prep														
Acq. Materials.														
Setup at RMD														
Eval. each chan.														
Travel to Jlab.														

Note on Cost

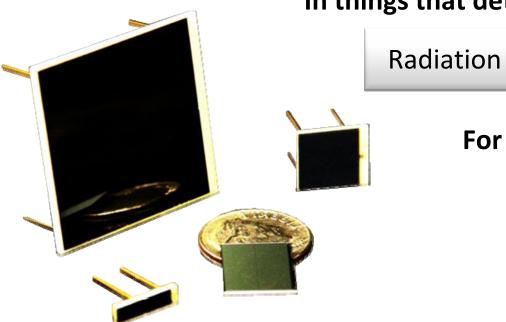
- Material cost of CMOS based instruments scale per area.
- There is a NRE for each new mask set.
 - Defines the structures to be built in the silicon.
 - Layout costs and materials.
- Estimate 65 reticles per wafer (equivalent to 65 detectors).
- PrimEx Calorimeter will need no less than 56 wafers.
 - Full production of wafers will be implemented.
 - This will reduce the cost significantly.
- Packaging is not trivial because of the size.
 - The device causes a more expensive, non-commercial packaging.
 - I'm working on a simple FR4 (standard PCB) package.
- As final parts are built, I will have a better idea of the cost and will be able to provide a better price.
- Estimated Price: \$100 \$800 for each SSPM.
- The AD9230 is \$100 per ADC for large orders.



Questions

- Will an external ADC be used?
- Will you need an amplifier connected to the SSPM?
- Will a digitally controlled DC/DC boost converter be useful?
- Will the gain monitor signal be useful?
- If you are seriously considering using off-detector (modular) components, we can accelerate our schedule for testing at JLab if a DAQ system is available.
 - A revision of the pcb package is available.
 - Silicon die are available.
 - Package up detectors within a couple of weeks.
 - Layout and fabrication of an interconnect board with an amplifier is quick.
 - We would just need to know what our output should be (differential, signal ended, voltage swing, etc.).
 - Is this what is needed?

Dynasil: Current Facilities & Products



What Does RMD Research Do?

We perform research and development in:

Materials Sensors Instruments (Proof-of-concept)

In things that detect, use or measure:

Solid-state light detectors

For use in/by:

Light

Homeland security
Military & "First Responders"
Medical diagnosis & treatment
Industry
Other research organizations

Magnetism

Sound

Enabling Technologies in Multiple Growth Markets

Detector Type	Medical Diagnostics	Border Security Police & Military	Industrial
X-Rays	Flat Panel Detectors Computed Tomography Dosimeters (Medical)	Baggage Scanners Container Scanners	Product Testing Product Inspection
Gammas	PET SPECT MRI+PET Surgical Probes	Nuke Pagers/HH/Portals Container Scanners Dosimeters	Oil Exploration Non destructive testing; others
Neutrons	Emerging Techniques	Nuke Pagers/HH/Portals Container Scanners Dosimeters	Oil Exploration Non destructive testing; others
Magnetic			Aircraft Inspection Power Plant Inspection Steel Hardening
Key Drivers	Lower Radiation Doses Higher Thru-put Lower Initial / LT Costs Multi-mode Diagnostics	More Sensitive Replacing Helium-3 More Compact More Robust	Higher Resolution More Sensitivity Higher Thru-put Lower Cost

RMD Advantages

Brighter & Faster
Thin Film & Ceramic
Scintillators

High-Performance Crystals Lower-Cost Ceramics Dual-Mode Crystals Solid-State Light Detectors IC-Based Dosimeters

> Novel Eddy-Current Sensor Technology

Partners and Agencies

- > New technology helps drives new physics experiments.
- > Scientific community provides a valued proving ground for new technology.

ANL
Brookhaven
Edgewood
Fort Monmouth
INL
JPL
JSFC
LANL
LBNL
LLNL
MSFC
NASA Goddard
NDI

NRL **ORNL PNNL** ROME Sandia **WPAFB**

Arizona State University Boston University Brandeis CUNY Duke **Fisk University** Georgia tech Harvard **Johns Hopkins Kansas State** LSU **Mayo Clinic**

MGH MIT Northeastern **Penn State Purdue Roswell Park Cancer Center Stanford Tufts** U AZ

UC Berkely UC Davis UCLA UCSF

U Mass U Mich **U** Oklahoma UNH U Penn USC WSU Yale

Army Air Force **DNDO** DOC DOE DTRA **EPA HSARPA** HUD **Marines** NASA Navy NIH **NIST NSF US Customs**

Analogic AS&E **BTI** Canberra Conoco General Atomic General Electric **General Motors ICX** Raytheon Schlumberger **Thompson CSF** Titan Tyco **US Surgical** Varian **Xerox**

