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our sample. We choose a relatively tight cut on the BDTG output variable that leaves
26 007±166 signal candidates containing 5.4% background within ±15 MeV (±2 �) of the
J/ K
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p mass peak, as determined by the unbinned extended likelihood fit shown in Fig. 4.

The combinatorial background is modeled with an exponential function and the ⇤0
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shape is parameterized by a double-sided Hypatia function [23], where the signal radiative
tail parameters are fixed to values obtained from simulation. For subsequent analysis we
constrain the J/ K
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p four-vectors to give the ⇤0
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invariant mass and the ⇤0
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momentum
vector to be aligned with the measured direction from the primary to the ⇤0
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vertices [24].
In Fig. 5 we show the “Dalitz” plot [25] using the K

�
p and J/ p invariant masses-

squared as independent variables. A distinct vertical band is observed in the K�
p invariant

mass distribution near 2.3 GeV2 corresponding to the ⇤(1520) resonance. There is also a
distinct horizontal band near 19.5 GeV2. As we see structures in both K

�
p and J/ p mass

distributions we perform a full amplitude analysis, using the available angular variables
in addition to the mass distributions, in order to determine the resonances present. No
structure is seen in the J/ K

� invariant mass.
We consider the two interfering processes shown in Fig. 1, which produce two distinct

decay sequences: ⇤0
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�
p and ⇤0
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where � is the quantum number related to the projection of the spin of the particle onto
its momentum vector (helicity) and HA!BC

�B ,�C
are complex helicity-coupling amplitudes
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describing the decay dynamics. Here ✓
A

and �
B

are the polar and azimuthal angles of B
in the rest frame of A (✓

A

is known as the “helicity angle” of A). The three arguments of
Wigner’s D-matrix are Euler angles describing the rotation of the initial coordinate system
with the z-axis along the helicity axis of A to the coordinate system with the z-axis along
the helicity axis of B [11]. We choose the convention in which the third Euler angle is
zero. In Eq. (1), dJA

�A,�B��C (✓A) is the Wigner small-d matrix. If A has a non-negligible
natural width, the invariant mass distribution of the B and C daughters is described by
the complex function R

A

(m
BC

) discussed below, otherwise R

A

(m
BC

) = 1.
Using Clebsch-Gordan coe�cients, we express the helicity couplings in terms of LS

couplings (B
L,S

), where L is the orbital angular momentum in the decay, and S is the
total spin of A plus B:
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(2)
where the expressions in parentheses are the standard Wigner 3j-symbols. For strong decays,
possible L values are constrained by the conservation of parity (P ): P

A

= P

B

P

C

(�1)L.
Denoting J/ as  , the matrix element for the ⇤0

b

! J/ ⇤

⇤ decay sequence is
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where the x-axis, in the coordinates describing the ⇤0
b

decay, is chosen to fix �
⇤

⇤ = 0. The
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Executive summary

The prospect of hadrons with more than the minimal quark content (qq or qqq) was
proposed by Gell-Mann in 1964 [1], followed by a quantitative model for two quarks plus
two antiquarks developed by Ja↵e in 1976 [2]. The idea was expanded upon by Strottman
in 1979 [3] to include baryons composed of four quarks plus one antiquark; the name
pentaquark was coined by Lipkin [4]. Past claimed observations of pentaquark states have
been shown to be spurious [5], although there is at least one viable tetraquark candidate,
the Z(4430)+ that has been observed in B

0 !  

0
K

�
⇡

+ decays [6–8], implying that the
existence of pentaquark baryon states would not be surprising. States that decay into
charmonium may have particularly distinctive signatures [9].

Large yields of ⇤0
b

! J/ K

�
p decays are available at LHCb and have been used for

the precise measurement of the ⇤0
b

lifetime [10]. (In this Letter mention of a particular
mode implies use of its charge conjugate as well.) This decay can proceed by the diagram
shown in Fig. 1(a), and is expected to be dominated by ⇤⇤ ! K

�
p resonances, as are

evident in our data shown in Fig. 2(a). It could also have exotic contributions, as indicated
by the diagram in Fig. 1(b), that could result in resonant structures in the J/ p mass
spectrum shown in Fig. 2(b).

Figure 1: Feynman diagrams for (a) ⇤0
b

! J/ ⇤

⇤ and (b) ⇤0
b

! P

+
c

K

� decay.
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Figure 2: Invariant mass of (a) K
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p and (b) J/ p combinations from ⇤
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! J/ K
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p decays.

The solid (red) curve is the expectation from phase space. The background has been subtracted.
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In practice resonances decaying strongly into J/ p must have a minimal quark content
of ccuud, and thus are charmonium-pentaquarks; we label such states P+

c

, irrespective of
the internal binding mechanism. In order to ascertain if the structures seen in Fig. 2(b)
are resonant in nature and not due to reflections generated by the ⇤⇤ states, it is necessary
to perform a full amplitude analysis, allowing for interference e↵ects between both decay
sequences.

The fit uses five decay angles as independent variables as well as the K

�
p invariant

mass m
Kp

. First we tried to fit the data with an amplitude model that contains 14 ⇤⇤

states listed by the Particle Data Group [11]. As this did not give a satisfactory description
of the data, we added one P

+
c

state, and when that was not su�cient we included a
second state. The two P

+
c

states are found to have masses of 4380 ± 8 ± 29 MeV and
4449.8± 1.7± 2.5 MeV, with corresponding widths of 205± 18± 86 MeV and 39± 5± 19
MeV. (Natural units are used throughout this Letter. Whenever two uncertainties are
quoted the first is statistical and the second systematic.) The fractions of the total sample
due to the lower mass and higher mass states are (8.4± 0.7± 4.2)% and (4.1± 0.5± 1.1)%,
respectively. The best fit solution has spin-parity J

P values of (3/2�, 5/2+). Acceptable
solutions are also found for additional cases with opposite parity, either (3/2+, 5/2�) or
(5/2+, 3/2�). The best fit projections are shown in Fig. 3. Both m

Kp

and the peaking
structure in m

J/ p

are reproduced. The significances of the lower mass and higher mass
states are 9 and 12 standard deviations, respectively.
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Figure 3: Fit projections for (a) m
Kp

and (b) m
J/ p

for the reduced ⇤

⇤ model with two P

+
c

states
(see Table 1). The data are shown as solid (black) squares, while the solid (red) points show the
results of the fit. The solid (red) histogram shows the background distribution. The (blue) open
squares with the shaded histogram represent the P

c

(4450)+ state, and the shaded histogram
topped with (purple) filled squares represents the P

c

(4380)+ state. Each ⇤

⇤ component is also
shown. The error bars on the points showing the fit results are due to simulation statistics.
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Table 1: The ⇤

⇤ resonances used in the di↵erent fits. Parameters are taken from the PDG [11].
We take 5/2� for the J

P of the ⇤(2585). The number of LS couplings is also listed for both
the “reduced” and “extended” models. To fix overall phase and magnitude conventions, which
otherwise are arbitrary, we set B0, 12

= (1, 0) for ⇤(1520). A zero entry means the state is excluded

from the fit.

State J

P

M0 (MeV) �0 (MeV) # Reduced # Extended

⇤(1405) 1/2� 1405.1+1.3
�1.0 50.5± 2.0 3 4

⇤(1520) 3/2� 1519.5± 1.0 15.6± 1.0 5 6
⇤(1600) 1/2+ 1600 150 3 4
⇤(1670) 1/2� 1670 35 3 4
⇤(1690) 3/2� 1690 60 5 6
⇤(1800) 1/2� 1800 300 4 4
⇤(1810) 1/2+ 1810 150 3 4
⇤(1820) 5/2+ 1820 80 1 6
⇤(1830) 5/2� 1830 95 1 6
⇤(1890) 3/2+ 1890 100 3 6
⇤(2100) 7/2� 2100 200 1 6
⇤(2110) 5/2+ 2110 200 1 6
⇤(2350) 9/2+ 2350 150 0 6
⇤(2585) ? ⇡2585 200 0 6
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Figure 6: Results for (a) m
Kp

and (b) m
J/ p

for the extended ⇤

⇤ model fit without P+
c

states.
The data are shown as (black) squares with error bars, while the (red) circles show the results of
the fit. The error bars on the points showing the fit results are due to simulation statistics.
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Figure 9: Fitted values of the real and imaginary parts of the amplitudes for the baseline (3/2�,
5/2+) fit for a) the P

c

(4450)+ state and b) the P

c

(4380)+ state, each divided into six m

J/ p

bins
of equal width between ��0 and +�0 shown in the Argand diagrams as connected points with
error bars (m

J/ p

increases counterclockwise). The solid (red) curves are the predictions from
the Breit-Wigner formula for the same mass ranges with M0 (�0) of 4450 (39) MeV and 4380
(205) MeV, respectively, with the phases and magnitudes at the resonance masses set to the
average values between the two points around M0. The phase convention sets B0, 12

= (1, 0) for

⇤(1520). Systematic uncertainties are not included.

P

c

(4380)+ has a mass of 4380± 8± 29 MeV and a width of 205± 18± 86 MeV, while the
heavier state P

c

(4450)+ has a mass of 4449.8± 1.7± 2.5 MeV and a width of 39± 5± 19
MeV. A model-independent representation of the P

c

(4450)+ contribution in the fit shows
a phase change in amplitude consistent with that of a resonance. The parities of the two
states are opposite with the preferred spins being 3/2 for one state and 5/2 for the other.
The higher mass state has a fit fraction of (4.1± 0.5± 1.1)%, and the lower mass state of
(8.4± 0.7± 4.2)%, of the total ⇤0

b

! J/ K

�
p sample.
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where Mmissð!þ!#Þ is the missing mass recoiling
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, Ec:m: is the center-of-mass

(c.m.) energy, and E&
!þ!# and p&

!þ!# are the energy

and momentum of the !þ!# system measured in the
c.m. frame. Candidate !ð5SÞ ! !ðnSÞ!þ!# events
are selected by requiring jMmissð!þ!#Þ #m!ðnSÞj<
0:05 GeV=c2, where m!ðnSÞ is the mass of an !ðnSÞ state
[7]. Sideband regions are defined as 0:05 GeV=c2 <
jMmissð!þ!#Þ #m!ðnSÞj< 0:10 GeV=c2. To remove
background due to photon conversions in the innermost
parts of the Belle detector we require M2ð!þ!#Þ>
0:20; 0:14; 0:10 GeV=c2 for a final state with an !ð1SÞ,
!ð2SÞ, !ð3SÞ, respectively.

Amplitude analyses of the three-body !ð5SÞ !
!ðnSÞ!þ!# decays reported here are performed by means
of unbinned maximum likelihood fits to two-dimensional
M2½!ðnSÞ!þ( vs M2½!ðnSÞ!#( Dalitz distributions.
The fractions of signal events in the signal region are
determined from fits to the corresponding Mmissð!þ!#Þ
spectrum and are found to be 0:937) 0:015ðstatÞ, 0:940)
0:007ðstatÞ, 0:918) 0:010ðstatÞ for final states with!ð1SÞ,
!ð2SÞ,!ð3SÞ, respectively. The variation of reconstruction
efficiency across the Dalitz plot is determined from a
GEANT-based MC simulation [8] and is found to be small
except for the higherM½!ðnSÞ!)( region. The distribution
of background events is determined using events from the
!ðnSÞ sidebands and found to be uniform (after efficiency
correction) across the Dalitz plot.

Dalitz distributions of events in the!ð2SÞ sidebands and
signal regions are shown in Figs. 1(a) and 1(b), respec-
tively, where M½!ðnSÞ!(max is the maximum invariant
mass of the two !ðnSÞ! combinations. This is used to
combine !ðnSÞ!þ and !ðnSÞ!# events for visualization
only. Two horizontal bands are evident in the !ð2SÞ!
system near 112:6 GeV2=c4 and 113:3 GeV2=c4, where
the distortion from straight lines is due to interference with
other intermediate states, as demonstrated below. One-
dimensional invariant mass projections for events in the

!ðnSÞ signal regions are shown in Fig. 2, where two peaks
are observed in the !ðnSÞ! system near 10:61 GeV=c2

and 10:65 GeV=c2. In the following we refer to these
structures as Zbð10 610Þ and Zbð10 650Þ, respectively.
We parametrize the !ð5SÞ ! !ðnSÞ!þ!# three-body

decay amplitude by

M ¼ AZ1
þ AZ2

þ Af0 þ Af2 þ Anr; (1)

where AZ1
and AZ2

are amplitudes to account for contribu-
tions from the Zbð10 610Þ and Zbð10 650Þ, respectively.
Here we assume that the dominant contributions come
from amplitudes that preserve the orientation of the spin
of the heavy quarkonium state and, thus, both pions in the
cascade decay !ð5SÞ ! Zb! ! !ðnSÞ!þ!# are emitted
in an S wave with respect to the heavy quarkonium system.
As demonstrated in Ref. [9], angular analyses support this
assumption. Consequently, we parametrize the observed
Zbð10 610Þ and Zbð10 650Þ peaks with an S-wave Breit-

Wigner function BWðs;M;"Þ ¼
ffiffiffiffiffiffi
M"

p

M2#s#iM"
, where we do

not consider possible s dependence of the resonance width.
To account for the possibility of !ð5SÞ decay to both
Zþ
b !

# and Z#
b !

þ, the amplitudes AZ1
and AZ2

are symme-
trized with respect to !þ and !# transposition. Using
isospin symmetry, the resulting amplitude is written as
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FIG. 1. Dalitz plots for !ð2SÞ!þ!# events in the (a) !ð2SÞ
sidebands; (b) !ð2SÞ signal region. Events to the left of the
vertical line are excluded.
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FIG. 2. Comparison of fit results (open histogram) with ex-
perimental data (points with error bars) for events in the !ð1SÞ
(a),(b), !ð2SÞ (c),(d), and !ð3SÞ (e),(f) signal regions. The
hatched histogram shows the background component.
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FIG. 3: Mπ±hc
distribution of e+e− → π+π−hc candidate events in the hc signal region (dots with error

bars) and the normalized hc sideband region (shaded histogram), summed over data at all energy points.

)2(GeV/c
ch±πM

3.95 4.00 4.05 4.10 4.15 4.20 4.25

)2
Ev

en
ts

/(0
.0

05
 G

eV
/c

0

20

40

60

80

100

120

)2(GeV/c
ch+πM

3.8 3.9 4.0 4.1

)2
Ev

en
ts

/(0
.0

05
 G

eV
/c

0

10

20

30

40

50

FIG. 4: Sum of the simultaneous fits to the Mπ±hc
distributions at 4.23 GeV, 4.26 GeV, and 4.36 GeV

as described in the text; the inset shows the sum of the simultaneous fit to the Mπ+hc
distributions at

4.23 GeV and 4.26 GeV with Zc(3900) and Zc(4020). Dots with error bars are data; shaded histograms are
normalized sideband background; the solid curves show the total fit, and the dotted curves the backgrounds
from the fit.
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