Level-3 Trigger Update Justin Stevens Trigger Meeting 9.2.14

Level-3 BDT Inputs Reminder

float Nstart counter; float Ntof;

float Ptot_tracks;

// Number of start counter hits // Number of TOF hits

// Number of BCAL clusters float Nbcal clusters; float EbcalClusters; // Total energy in BCAL (Clusters)

// Number of FCAL clusters float Nfcal clusters; float EfcalClusters; // Total energy in FCAL (Clusters)

float Ntrack_candidates; // Number of track candidates // Scaler sum of total momentum from candidate tracks

Track momentum sum resolution

Hybrid tracking approach

- Using hybrid tracking approach
- For a rate of 20 kHz, achieve ~94% L3 average efficiency in the coherent peak
- For # neutrons = 0, have ~96% effic
- 89% efficiency for zero photon events
- Performance is similar to doing full wire-based tracking (with less CPU)

Looking more in depth at topologies

- * Generated a sample of 2M bggen events with E_y > 7 GeV with EM background turned on
- * Need lower level objects for L1 and L3 trigger simulation so can't use data challenge files in REST format
- * L3 efficiency lower in low photon multiplicity final states, but need to study these for "reconstructable" events

Neutrons = 0

Neutrons > 0

Studying the trigger in physics analyses

final states	Nsignal	fPYTHIA	€(reco)
рπ⁺π⁻	219201	10.96	0.27
ρπ⁺π⁻π ⁰	93802	4.69	0.26
pπ⁺π⁻π⁺π⁻	47092	2.35	0.14
ρπ⁺π⁻π⁺π⁻π ⁰	121003	6.05	0.10
pK⁺K⁻	6747	0.34	0.22
pK⁺K⁻π⁰	3841	0.19	0.26
pK₅K⁻π⁺; K₅→π⁺π⁻	2022	0.10	0.10
pK₅K⁻π⁺π⁰; K₅→π⁺π⁻	3056	0.15	0.08
pK₅K⁺π⁻; K₅→π⁺π⁻	1759	0.09	0.12
pK _s K⁺π⁻π⁰; K _s →π⁺π⁻	2214	0.11	0.09
pK⁺K⁻π⁺π⁻	7539	0.38	0.12
ρΚ⁺Κ⁻π⁺π⁻π ^₀	10571	0.53	0.09
∧К⁺; ∧→рπ⁻	41	0.00	0.10
ΛК⁺π⁰; Λ→рπ⁻	323	0.02	0.05
nπ ⁺ π ⁻ π ⁺	24203	1.21	0.41
nπ+π-π+π ⁰	69037	3.45	0.28
nπ ⁺ π ⁻ π ⁺ π ⁻ π ⁺	12512	0.63	0.12
nπ ⁺ π ⁻ π ⁺ π ⁻ π ⁺ π ⁰	33030	1.65	0.08
nK₅K⁺; K₅→π⁺π⁻	253	0.01	0.32
nK₅K⁺π⁰; K₅→π⁺π⁻	916	0.05	0.19
nK⁺K⁻π⁺	2569	0.13	0.36
nK⁺K⁻π⁺π⁰	4402	0.22	0.26
nK₅K⁺π⁺π⁻; K₅→π⁺π⁻	1443	0.07	0.10
nK₅K⁺π⁺π⁻π⁰; K₅→π⁺π⁻	2309	0.12	0.06

- To understand trigger inefficiencies related to track reconstruction need to evaluate in relation to offline event reconstruction
- Idea: quantify expected
 Level-1 and Level-3 trigger
 efficiencies for some set of
 physics channels
 reconstructed offline
- * I picked a "reasonable" set of final states; focusing on low photon multiplicity final states (ie. $\# \pi^0 < 2$) which is ~30% of the total cross section

"Reconstructable" events

- Want to understand the impact of the trigger on event yields in the case of realistic physics analyses
- * The only loss in statistics (due to the trigger) come from events which can be reconstructed properly, but fail to satisfy the trigger
- * Need to define a set of cuts for events that are "reconstructable" offline for an end user analysis
- * Use Paul's suggested cuts from the data challenge:
 - * Tracking FOM 3σ
 - * Track has detector match (SC/TOF/BCAL/FCAL)
 - * Photon PID FOM 5σ
- * No kinematic fit or other exclusivity cuts applied

Efficiency summary

final states	Nsignal	fPYTHIA	ε(L1)	€(L3)	€(reco)	reco ε(L1)	reco ε(L3)
рπ⁺π⁻	219201	10.96	0.40	0.89	0.27	0.53	0.97
pπ⁺π⁻π ⁰	93802	4.69	0.81	0.92	0.26	0.88	0.96
ρπ⁺π⁻π⁺π⁻	47092	2.35	0.91	0.86	0.14	0.95	0.93
ρπ⁺π⁻π⁺π⁻π ⁰	121003	6.05	0.98	0.92	0.10	0.99	0.95
pK⁺K⁻	6747	0.34	0.35	0.77	0.22	0.56	0.93
pK⁺K⁻π⁰	3841	0.19	0.86	0.84	0.26	0.91	0.93
pK₅K⁻π⁺; K₅→π⁺π⁻	2022	0.10	0.84	0.84	0.10	0.87	0.94
pK₅K⁻π⁺π⁰; K₅→π⁺π⁻	3056	0.15	0.98	0.89	0.08	0.98	0.96
pK₅K⁺π⁻; K₅→π⁺π⁻	1759	0.09	0.86	0.85	0.12	0.91	0.96
pK _s K⁺π⁻π⁰; K _s →π⁺π⁻	2214	0.11	0.99	0.90	0.09	1.00	0.95
pΚ⁺Κ⁻π⁺π⁻	7539	0.38	0.91	0.82	0.12	0.95	0.91
ρΚ⁺Κ⁻π⁺π⁻π ^₀	10571	0.53	0.99	0.89	0.09	1.00	0.96
ΛК⁺; Λ→рπ⁻	41	0.00	0.32	0.76	0.10	0.75	1.00
ΛK⁺π⁰; Λ→pπ⁻	323	0.02	0.71	0.82	0.05	0.82	0.88
nπ ⁺ π ⁻ π ⁺	24203	1.21	0.76	0.83	0.41	0.79	0.89
nπ+π-π+π ⁰	69037	3.45	0.94	0.87	0.28	0.96	0.91
nπ ⁺ π ⁻ π ⁺ π ⁻ π ⁺	12512	0.63	0.95	0.79	0.12	0.98	0.85
nπ ⁺ π ⁻ π ⁺ π ⁻ π ⁺ π ⁰	33030	1.65	0.98	0.85	0.08	0.99	0.88
nK₅K⁺; K₅→π⁺π⁻	253	0.01	0.70	0.79	0.32	0.80	0.90
nK₅K⁺π⁰; K₅→π⁺π⁻	916	0.05	0.91	0.80	0.19	0.98	0.87
nK⁺K⁻π⁺	2569	0.13	0.75	0.78	0.36	0.78	0.86
nK+K ⁻ π+π ⁰	4402	0.22	0.94	0.82	0.26	0.96	0.88
nK₅K⁺π⁺π⁻; K₅→π⁺π⁻	1443	0.07	0.93	0.77	0.10	0.98	0.93
nK₅K⁺π⁺π⁻π⁰; K₅→π⁺π⁻	2309	0.12	0.99	0.84	0.06	1.00	0.89

Summary

- Studied trigger efficiency for low photon multiplicity final states with and without requiring events to be reconstructed offline
- See increase in efficiency for "reconstructable" events relative to all generated events, as expected
 - * L3 efficiency for these events is at ~0.95 for proton topologies and ~0.88 for neutron topologies
- * Remaining events which fail L3 trigger appear to be related to poor DTrackCandidate resolution for $\theta > 15^{\circ}$

Thoughts for discussion another time

- * Fall commissioning run:
 - * Will L3 be included in passthrough mode?
 - * Any use for low-level L3 algorithm for testing/monitoring later in the fall?
- * L3 information in event stream:
 - Starting to think about usefulness of storing information used in L3 decision for use in offline analysis
 - * eg. pointer to raw hits used in tracking could be useful to emulate L3 decision offline with improved calibrations

Backup

Level-1 Trigger

- Sample of bggen events with high-luminosity EM pileup
- * Define "signal" as $E_{\gamma} > 7 \text{ GeV}$ and "background" $E_{\gamma} < 7 \text{ GeV}$
- * Accept events which fire L1a or L1b emulated trigger
- Reject ~77% of background with signal efficiency of 92%
- So far haven't considered EM only background rate

```
bool sum_cut = (Ebcal + 4.0*Efcal)>=2.0;
trig->L1a_fired = sum_cut && Ebcal>0.200 && Efcal>0.030;
trig->L1b_fired = sum_cut && Ebcal>0.030 && Efcal>0.030 && Nschits>0;
```

Level-3 Evaluation Reminder

Algorithm Improvements

- Lowest efficiency for channels with low photon multiplicity, which have been the focus of many physics analyses (n3π, PAC40, PID upgrade)
- Using DTrackCandidates is limiting the L3 trigger, not calorimeter reconstruction
- To confirm use the MC truth information for charged particles, and get much higher L3 efficiency (no neutron info)
- Try using more sophisticated track reconstruction algorithm (DTrackWireBased) keeping in mind the CPU penalty

Algorithm timing: A staged approach

- * I've been testing the algorithms on the online "gluon" cluster (using one of the nodes designated for the L3 farm)
- So far only testing the reconstruction portion of the algorithm, *ie.* not converting from EVIO using translation tables, etc.
- * The new algorithm uses hybrid tracking and is also "staged" by:
 - * Training multiple BDTs, using subsets of the variables from the fast detectors
 - Reject background events which fail a cut on the BDT response at each stage, while maintaining 99% efficiency for the signal events (reduces event rate for track reconstruction from ~50 kHz input rate to ~38 kHz)

Stage	BDT Variables	Output Rate (kHz)
1	SC+FCAL	42.8
2	SC+FCAL+TOF	41.6
3	SC+FCAL+TOF+BCAL	38.3

* Although we've added a more CPU intensive tracking algorithm, the net processing rate compared to the algorithm used in the ODC is only ~10% slower

Level-3 Node Count

- During the Fall 2013 Online Data Challenge (ODC) achieved an L3 processing rate of ~1.6 kHz/node with borrowed machines (includes ~25% hyperthread gain)
- Currently have 10 nodes (16 cores each) in the counting house with better specs (8 assigned to L3 at the moment)
- Scaling by increased performance for the new nodes corresponds to an L3 processing rate of ~3.9 kHz/node
 - * The version of the L3 algo used did not do any "staging" to make decisions based on SC/TOF/FCAL/BCAL before spending time on tracking
 - It also only used DTrackCandidates instead of DTrackWireBased (would slow down by factor of ~2-3 if wanted to use wire based for all tracks)

Phase	Photon Rate	Nominal L1 Rate	Required Nodes
III	1x10 ⁷	20 kHz	5
IV	5x10 ⁷	100 kHz	25
IV+	1x10 ⁸	200 kHz	50

The 10 nodes we have now will allow us to tag events with L3 in 2016

ODC info: <u>http://argus.phys.uregina.ca/cgi-bin/private/DocDB/ShowDocument?docid=2341</u>