SiPM Bias Analysis

Shaun Krueger, Tegan Beattie On behalf of UofR group September 11, 2012

Motivation

- In response to the theoretical results achieved by Yi Qiang on July 24, 2012
- To perform a direct check of the response of the 2010 SiPMs to varying voltage biases
- To provide a physical analysis of the normalized resolution and dark current of the 2010 SiPMs

Experimental Setup

- PicoQuant PDL 800-B laser
- 2.5 MHz frequency pulses

•

- 2 ms timer to slow count rate
- Bias supplied by Keithley 6487 Voltage Source

Data Sets

- Signal Data:
 - Taken at laser intensity 2.2, 2.4, and 2.6 (a.u.)
 - Using amplifier, bias, and laser light
- Noise:
 - Using amplifier and bias. No laser light.
- 50 Ω pedestal

– Taken with 50 Ω terminators in ADC inputs

Spectra Examples

- Top Right: Signal Spectrum
- Bottom Left: 50 Ω pedestal
- Bottom Right: Noise Spectrum 1000

2012/08/16 09.50

Breakdown Voltage

- Determined the breakdown voltage of the 2010 preproduction SiPMs was 0.4 V higher than stated from Jlab.
- New breakdown voltage found to be 70.34 ±0.02 V
- Adjusted all further graphs to account for adjusted breakdown voltage.

Normalized Resolution: SiPM 10

- Plot of RMS/Corrected Mean vs bias
- Top Right: Laser Intensity 2.2
- Bottom Left: Laser Intensity 2.4
- Bottom Right: Laser Intensity 2.6

7

Normalized Resolution: SiPM 2

- Plot of RMS/Corrected Mean vs bias
- Top Right: Laser Intensity 2.2
- Bottom Left: Laser Intensity 2.4
- Bottom Right: Laser Intensity 2.6

SiPM 10: Mean Noise and RMS

• Top: Average noise and RMS in ADC channels

Bottom: Average noise and RMS expressed as dark current

SiPM 2: Mean Noise and RMS

• Top: Average noise and RMS in ADC channels

• Bottom: Average noise and RMS expressed as dark current

Check for Poisson Characteristics

Conclusions

- Resolution is minimized around 0.9V 1.1V
 => 1.2 V may be too high
- 15% increase in noise going from 1.0V to 1.1V
- 35% increase in noise going from 1.0V to 1.2V
- Noise does not follow Poissonian trend

=> Rises faster than expected

- Future Measurements:
 - Recheck outliers
 - Check 2011 Units