Surveying GlueX Final States with a ReactionFilter Plugin

Ryan Mitchell GlueX Analysis Meeting November 21, 2016

Including:

I. Description of the ReactionFilter plugin II. Sanity checks for a few simple channels III. Reference plots for many channels

ReactionFilter Plugin

(1) Specify reactions in a configuration file:

ReactionFilter:FS1 ReactionFilter:FS2 ReactionFilter:FS3	EXC_100_110 EXC_100_111 EXC_100_110000	// exclusive gamma p> p pi+ pi- // exclusvie gamma p> p pi+ pi- piO // exclusvie gamma p> p K+ K-
ReactionFilter:FS4	EXC_100000000_100000	// exclusive gamma p> Lambda K+
ReactionFilter:FS5	EXC_100000000_100001	// exclusive gamma p> Lambda K+ piO
ReactionFilter:FS6	EXC_100000000_1100	// exclusive gamma p> Lambda Ks pi+
ReactionFilter:FS20	EXC_NIMF_100_111	// exclusvie gamma p> p pi+ pi- pi0
ReactionFilter:FS40	EXC NIME 10000000 10	0000 // exclusive gamma p> Lambda K+ 🦳
ReactionFilter:FS50 ReactionFilter:FS60	EXC_NIMF_100000000_10	0001 // exclusive gamma p> Lambda K+ pi0 00 // exclusive gamma p> Lambda Ks pi+
Reaction freer .1 500		

EXC: exclusive; NIMF: no intermediate mass fits

This uses the Analysis library to make "standard" cuts, do kinematic fitting *(event four-momentum, event vertex, intermediate masses, detached vertices),*

and output the standard ROOT TTree.

These decays are used: $\pi^0 \rightarrow \gamma\gamma; \eta \rightarrow \gamma\gamma; K_S \rightarrow \pi^+\pi^-; \Lambda \rightarrow \pi^-p.$

(2) Run ReactionFilter as a plugin (run over data on the karst machines at IU).

hd_root -PPLUGINS=ReactionFilter --config=RF.txt dana_rest_TESTDATA.hddm

(3) Use a ROOT script to convert the output ROOT TTree to a flat format (my preference).

ReactionFilter Plugin

Cuts:

locReaction->Set_MaxPhotonRFDeltaT(0.5*dBeamBunchPeriod);

if (!fsInfo->inclusive())
locReaction->Set_MaxExtraGoodTracks(2);

locReaction->Set_InvariantMassCut(Pi0, 0.080, 0.180); locReaction->Set_InvariantMassCut(Eta, 0.500, 0.600); locReaction->Set_InvariantMassCut(Lambda, 1.000, 1.200); locReaction->Set_InvariantMassCut(KShort, 0.400, 0.600);

if (fsInfo->exclusive())
locReaction->Add_ComboPreSelectionAction(new DCutAction_MissingMassSquared(locReaction, false, -0.1, 0.1));

+ PID timing cuts from the wiki

// should be tuned
locReaction->Add_AnalysisAction(new DCutAction_KinFitFOM(locReaction, -1.0));

Notes:

* running over 27 exclusive channels (shown in reference plots), used ~8GB of memory. * resulting root files were >1TB, which were reduced to 25GB after flattening, keeping only select information, and skimming using the kinematic fit χ^2 /dof. * jobs crash in two runs in the "golden period"... still investigating.

Sanity Checks: $\gamma p \rightarrow \pi^+\pi^- p$

(cuts shown with red lines are applied in all plots for a given channel)

Sanity Checks: $\gamma p \rightarrow \pi^+\pi^- p$

Sanity Checks: $\gamma p \rightarrow \pi^+\pi^- p$

Sanity Checks: $\gamma p \rightarrow K^+K^-p$

(cuts shown with red lines are applied in all plots for a given channel)

Sanity Checks: $\gamma p \rightarrow \pi^+ \pi^- \pi^0 p$

with π^0 mass constraint without π^0 mass constraint (π^0 mass cut on next slide)

Sanity Checks: $\gamma p \rightarrow \pi^+ \pi^- \pi^0 p$

(pre-kinematic fit cuts cause the edges)

Sanity Checks: $\gamma p \rightarrow K^+ \Lambda$

with Λ mass constraint without Λ mass constraint

(pre-kinematic fit cuts cause the edges)

Sanity Checks: $\gamma p \rightarrow K^+ \pi^0 \Lambda$

Sanity Checks: $\gamma p \rightarrow K_S \pi^+ \Lambda$

with Λ , K_S mass constraints without Λ , K_S mass constraints (mass cuts on next slide)

Sanity Checks: $\gamma p \rightarrow K_S \pi^+ \Lambda$

(pre-kinematic fit cuts cause the edges)

Reference Plots

Run over 27 exclusive channels with p, π^{\pm} , π^{0} , K^{\pm} , K_{S} .

ReactionFilter:FS1 EXC 100 2 EXC 100 110 ReactionFilter:FS2 ReactionFilter:FS3 EXC 100 111 EXC 100 112 ReactionFilter:FS4 EXC 100 220 ReactionFilter:FS5 EXC 100 221 ReactionFilter:FS6 EXC 100 222 ReactionFilter:FS7 EXC 100 330 ReactionFilter:FS8 ReactionFilter:FS9 EXC 100 2000 EXC 100 2001 ReactionFilter:FS10 ReactionFilter:FS11 EXC 100 2002 ReactionFilter:FS12 EXC 100 2110 ReactionFilter:FS13 EXC 100 11100 ReactionFilter:FS14 EXC 100 11101 EXC 100 11102 ReactionFilter:FS15 ReactionFilter:FS16 EXC 100 11210 EXC 100 101010 ReactionFilter:FS17 EXC 100 101011 ReactionFilter:FS18 EXC 100 101012 ReactionFilter:FS19 EXC 100 101120 ReactionFilter:FS20 ReactionFilter:FS21 EXC 100 110000 ReactionFilter:FS22 EXC 100 110001 EXC 100 110002 ReactionFilter:FS23 ReactionFilter:FS24 EXC 100 110110 ReactionFilter:FS25 EXC 100 110111 ReactionFilter:FS26 EXC 100 110112 EXC 100 110220 ReactionFilter:FS27

Use the same cuts as before, but add:

Beam energy > 8 GeV.

Use only the combination with the best χ^2 /dof across *all channels* (*needs study, maybe introduces a few strange features*).

Reference Plots (Example Channel)

Select **signal** and **sideband** regions using the χ^2 /dof of the kinematic fit.

Show mass plots for χ²/dof signal and sideband.
Compare with old FOCUS plots (scaled arbitrarily and not to be taken too seriously).

Reference Plots (Example Channel)

GlueX Reference Plots

Ryan Mitchell

November 19, 2016

Contents

1	$\gamma p o \pi^0 \pi^0 p$	4
2	$\gamma p \to \pi^+\pi^- p$	5
3	$\gamma p \to \pi^+ \pi^- \pi^0 p$	6
4	$ \begin{array}{l} \gamma p \to \pi^+ \pi^- \pi^0 \pi^0 p \\ 4.1 \gamma p \to \eta \pi^0 p \\ 4.2 \gamma p \to \omega \pi^0 p \\ \end{array} $	7 8 9
5	$\gamma p \to \pi^+ \pi^+ \pi^- \pi^- p$	10
6	$ \begin{array}{l} \gamma p \to \pi^+ \pi^+ \pi^- \pi^- \pi^0 p \\ 6.1 \gamma p \to \eta \pi^+ \pi^- p \\ 6.2 \gamma p \to \omega \pi^+ \pi^- p \\ \end{array} $	11 12 13
7	$ \begin{array}{l} \gamma p \to \pi^+ \pi^+ \pi^- \pi^- \pi^0 \pi^0 p \\ 7.1 \gamma p \to \eta \pi^+ \pi^- \pi^0 p \\ 7.2 \gamma p \to \omega \pi^+ \pi^- \pi^0 p \\ \end{array} $	14 15 16

8	$\gamma p \to \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- p$	17
9	$\gamma p \to K_S K_S p$	18

- $10 \ \gamma p \to K_S K_S \pi^0 p \tag{19}$
- 11 $\gamma p \rightarrow K_S K_S \pi^0 \pi^0 p$ 20
- $12 \ \gamma p \to K_S K_S \pi^+ \pi^- p \tag{21}$
- 13 $\gamma p \rightarrow K^- K_S \pi^+ p$ 22
- $14 \ \gamma p \to K^- K_S \pi^+ \pi^0 p \tag{23}$
- $15 \ \gamma p \to K^- K_S \pi^+ \pi^0 \pi^0 p$
- $16 \ \gamma p \to K^- K_S \pi^+ \pi^+ \pi^- p$ 25
- $\mathbf{17} \ \gamma p \to K^+ K_S \pi^- p \qquad \qquad \mathbf{26}$
- $\mathbf{18} \ \gamma p \to K^+ K_S \pi^- \pi^0 p \qquad \qquad \mathbf{27}$
- $19 \ \gamma p \to K^+ K_S \pi^- \pi^0 \pi^0 p$
- $20 \ \gamma p \to K^+ K_S \pi^+ \pi^- \pi^- p$
- $\mathbf{21} \ \gamma p \to K^+ K^- p \qquad \qquad \mathbf{30}$
- - ~

 $23.1 \ \gamma p \to \phi \pi^0 \pi^0 p \qquad \qquad 34$

$24 \ \gamma p ightarrow K^+ K^- \pi^+ \pi^- p$	35
$24.1 \ \gamma p \to \phi \pi^+ \pi^- p \dots $	36
$25 \ \gamma p \rightarrow K^+ K^- \pi^+ \pi^- \pi^0 p$	37
$25.1 \ \gamma p \to \eta K^+ K^- p \ \dots \$	38
$25.2 \ \gamma p \to \omega K^+ K^- p \dots $	39
25.3 $\gamma p \to \phi \pi^+ \pi^- \pi^0 p$	40
26 $\gamma p \rightarrow K^+ K^- \pi^+ \pi^- \pi^0 \pi^0 p$	41
26 $\gamma p \rightarrow K^+ K^- \pi^+ \pi^- \pi^0 \pi^0 p$ 26.1 $\gamma p \rightarrow \eta K^+ K^- \pi^0 p$	41 42
26 $\gamma p \rightarrow K^+ K^- \pi^+ \pi^- \pi^0 \pi^0 p$ 26.1 $\gamma p \rightarrow \eta K^+ K^- \pi^0 p$ 26.2 $\gamma p \rightarrow \omega K^+ K^- \pi^0 p$ 	41 42 43
26 $\gamma p \rightarrow K^+ K^- \pi^+ \pi^- \pi^0 \pi^0 p$ 26.1 $\gamma p \rightarrow \eta K^+ K^- \pi^0 p$ 26.2 $\gamma p \rightarrow \omega K^+ K^- \pi^0 p$ 26.3 $\gamma p \rightarrow \phi \pi^+ \pi^- \pi^0 \pi^0 p$	41 42 43 44
26 $\gamma p \to K^+ K^- \pi^+ \pi^- \pi^0 \pi^0 p$ 26.1 $\gamma p \to \eta K^+ K^- \pi^0 p$ 26.2 $\gamma p \to \omega K^+ K^- \pi^0 p$ 26.3 $\gamma p \to \phi \pi^+ \pi^- \pi^0 \pi^0 p$ 27 $\gamma p \to K^+ K^- \pi^+ \pi^+ \pi^- \pi^- p$	41 42 43 44 45

3
$$\gamma p \rightarrow \pi^+ \pi^- \pi^0 p$$

 $\mathbf{4} \quad \gamma p \to \pi^+ \pi^- \pi^0 \pi^0 p$

4.1 $\gamma p \rightarrow \eta \pi^0 p$

4.2 $\gamma p \rightarrow \omega \pi^0 p$

 $\mathbf{6} \quad \gamma p \rightarrow \pi^+ \pi^+ \pi^- \pi^- \pi^0 p$

6.1 $\gamma p \rightarrow \eta \pi^+ \pi^- p$

6.2 $\gamma p \rightarrow \omega \pi^+ \pi^- p$

 $\gamma p \rightarrow \pi^+ \pi^+ \pi^- \pi^- \pi^0 \pi^0 p$

7.1 $\gamma p \rightarrow \eta \pi^+ \pi^- \pi^0 p$

7.2 $\gamma p \rightarrow \omega \pi^+ \pi^- \pi^0 p$

 $\gamma p \rightarrow \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- p$

 $\gamma p \to K_S K_S p$

10 $\gamma p \rightarrow K_S K_S \pi^0 p$

 $\gamma p \to K_S K_S \pi^0 \pi^0 p$

12
$$\gamma p \rightarrow K_S K_S \pi^+ \pi^- p$$

13
$$\gamma p \rightarrow K^- K_S \pi^+ p$$

 $\gamma p \rightarrow K^- K_S \pi^+ \pi^0 p$

$$15 \quad \gamma p \to K^- K_S \pi^+ \pi^0 \pi^0 p$$

$$16 \quad \gamma p \to K^- K_S \pi^+ \pi^+ \pi^- p$$

17
$$\gamma p \to K^+ K_S \pi^- p$$

$$18 \quad \gamma p \to K^+ K_S \pi^- \pi^0 p$$

$$19 \quad \gamma p \to K^+ K_S \pi^- \pi^0 \pi^0 p$$

 $20 \quad \gamma p \to K^+ K_S \pi^+ \pi^- \pi^- p$

21 $\gamma p \rightarrow K^+ K^- p$

22
$$\gamma p \rightarrow K^+ K^- \pi^0 p$$

22.1 $\gamma p \rightarrow \phi \pi^0 p$

$$23 \quad \gamma p \to K^+ K^- \pi^0 \pi^0 p$$

23.1 $\gamma p \rightarrow \phi \pi^0 \pi^0 p$

24 $\gamma p \rightarrow K^+ K^- \pi^+ \pi^- p$

24.1 $\gamma p \rightarrow \phi \pi^+ \pi^- p$

25 $\gamma p \rightarrow K^+ K^- \pi^+ \pi^- \pi^0 p$

25.1 $\gamma p \rightarrow \eta K^+ K^- p$

25.2 $\gamma p \rightarrow \omega K^+ K^- p$

25.3 $\gamma p \rightarrow \phi \pi^+ \pi^- \pi^0 p$

 $26 \quad \gamma p \to K^+ K^- \pi^+ \pi^- \pi^0 \pi^0 p$

26.1 $\gamma p \rightarrow \eta K^+ K^- \pi^0 p$

26.2 $\gamma p \rightarrow \omega K^+ K^- \pi^0 p$

26.3 $\gamma p \rightarrow \phi \pi^+ \pi^- \pi^0 \pi^0 p$

 $\mathbf{27} \quad \gamma p \to K^+ K^- \pi^+ \pi^- \pi^- p$