Reconstruction of Shower Position from the Ratio of Upstream and Downstream Amplitudes (proof of principle)

Andrei Semenov (UofR)

GlueX-doc-2196

Formulas...

Assuming one-exponent attenuation (λ is attenuation length): A(up)/A(down) = exp(2 * X / λ) Or

 $X = 0.5 * \lambda * \ln(A(up) / A(down))$

Energy deposition fluctuations are calcelled in the ratio, so only photostatistics contributes to the position uncertainty (assuming we know the attenuation length): $\delta X = 0.5 * \lambda * SQRT((exp(-X/\lambda)+exp(X/\lambda)) / SQRT(Npe))$

Npe \approx 60 pe @ Bcal center for 2-MeV muons (from GlueX-doc-1582)

 $\lambda \approx 320$ cm with PMT (from GlueX-doc-1582 and GlueX-doc-2249)

Cosmics (2 MeV in the fibers per cell)

Data from Bcal test with cosmics in Regina in 2012 (GlueX-doc-2049)

Results from 2012 Cosmics Test

Expected Position Resolution

E=500 MeV @ 90 deg

E=1200 MeV @ 20 deg

Conclusions:

* With the ratio-of-amplitudes method, we can reach the position resolution better than 10 cm for high-energy-deposition readout cells and of the order of 10-20 cm for low-energy-deposition cells

* Though the reachable position resolution is no so good as expected for one-photon-hit with high-resolution TOF, the proposed technique should be used to improve position reconstruction (in addition to the timing methods) and to resolve ambiguous multihit situations.