Hall D FFB

6/8/2015

Fast Feedback Electronics

- All electronics for the position devices stream digital data out a fiber
- Any 8 devices can be connected to the FFB Chassis via fiber
- 6 magnets (3 vertical \& horizontal sets) are used to cancel beam motion
- Based on Hall A \& C FFB Systems
- 2 position devices and 2 magnet sets are used
- The algorithm kicks beam with magnets and records position response to self calibrate

- Holds trajectory constant
- Feedback to 120 Hz then feed forward for higher 60 Hz harmonics to 1 kHz
- Low currents will limit FFB bandwidth

Fast Feedback Testing

- Hardware was verified using beam
- Fiber data
- Magnet Controls
- Magnets mapped correctly
- Good response at 5.5 GeV with headroom for 12 GeV

IPM5C07 Stripline Frequency Response

Active Collimator time domain response to 1 kHz FFB magnet kick

Fast Feedback Testing

- Not enough time to implement full FFB algorithm
- Line-synchronized 60Hz Feedforward suppression algorithm used last 2 days of the run
- Also engaged slow EPICS position locks to steady the beam

FFB System

Inputs

- 7 Stripline BPMs
- BT02, 5C00, 5C02, 5C06, 5C07, 5C11B, AD00
- Others?
- 1 Active Collimator
- 2 Cavity BPMs?
- 5C11A, 5C11C

Outputs

- 3 Horizontal/Vertical

Magnet Pairs

- BS04H/V
$-5 \mathrm{COOH} / \mathrm{V}$
- 5C04H/V
- 1kHz Magnet

Response Bandwidth

FFB Component Locations

FFB Component Locations

Stripline BPM Electronics

Stripline BPM System Components

BPM Receiver Chassis

BPM Test Stand

- Goubau Line with Stripline BPM on X and Y stages
- Vector Volt Meters used for BPM characterization
- Calibration Cell \& 250' of LMR400 RF/control cables
- RF Down Converter \& IF Receiver on another bench

BPM Test Stand Stripline Electronics Testing

~30 nA @ 10 Hz

~30 nA @ 1 Hz

- Improving the signal-to-noise improves performance
- Filtering down to 1 Hz instead of 10 Hz gives an improvement factor of about 3.2
- This square root of bandwidth improvement holds true as long as the noise is Gaussian

Stripline BPM Performance

Stripline BPM Performance

	10um	
	BW Hz	Beam nA
Already need	0.1	95
2.3 A at 60 Hz	1	300
	60	2,324
for 10um	120	3,286
resolution	180	4,025
	240	4,648
	300	5,196
-10um	360	5,692
	420	6,148
	480	6,573
-430um	540	6,971
	600	7,348
	660	7,707
	720	8,050
	780	8,379
	840	8,695
	900	9,000
	960	9,295
	1,020	9,581

Stripline BPM Performance

Stripline BPM Performance

Stripline BPM Performance ($1 \mathrm{Hz)}$

- The plot shows Hall D current in black ramping from 0 to 75 nA
- The 5C07 and 5C09 BPM positions settle at about 7nA and accuracy improves as the signal-to-noise goes up (bandwidth of $\sim 1 \mathrm{~Hz}$)

Stripline BPM Performance (1Hz)

FFB Stripline BPMS

- 330nA @ 120Hz Bandwidth => 100um resolution
- 330nA @ 1kHz Bandwidth => 290um resolution
- 33nA @ 120Hz Bandwidth => 1mm resolution
- 33nA @ 1kHz Bandwidth => 2.9 mm resolution

Cavity BPM Electronics

Cavity Beam Position Monitors

- Electromagnetic field excited by beam
- TM ${ }_{110}$ Mode
- Probe antenna picks up field
- Test also used to excite field
- Copper coated to increase Q
- Tuning port for centering at 1497 MHz
- Annually/vacuum broken
- Temperature stabilized
- 1497 MHz Probe signals get down converted
- Positions go as X/I and Y/I
- IPM5C11A \& IPM5C11C

Cavity BPM Testing

- Behaves as expected vs. Stripline BPM
- Signal goes to zero at cavity center
- Phase shifts 180 degrees
- Phase used to determine sign of position
- More commissioning time needed
- Aim to have valid positions down to 100pA beam currents at 1 Hz

Active Collimator

- Richard Jones design
- Tungsten pincushion wedges
- Intercepts photon beam
- Current output
- Difference-oversum can be used on inner wedges when close to center (region 1 on the plot)

Active Collimator Electronics

Active Collimator

 outputs go to adjustable gain I-to-V amplifiers then VME ADC/control boards

Active Collimator Testing

burt scan ybeamscan2-11-07_rad_2e-5.txt

- Performs well, data above taken using X-stage to move through beam
- Hall D takes raw EPICS data and is calculating positions
- Engineering/Ops is also displaying waveforms, diff/sum positions and will soon have FFTs available

FFB Questions

- Adjustable bandwidth for feedback DSP chain?
- Set it for 120 Hz (100 um @ 300nA)
- Separate Feedforward DSP chain?
- Bandwidth?
- Adjustable?
- What beam currents do we want to target?
- Cavity BPMs?

