Differential cross section for Primakoff photo-production of $\pi^+\pi^-$

$$\frac{d^2\sigma}{d\Omega dM} = \frac{2\alpha Z^2}{\pi^2} \frac{E_{\gamma}^4 \beta^2}{M} \frac{\sin^2 \theta}{Q^4} \sigma(\gamma\gamma \to \pi\pi)$$

- 1. A. Halprin, C. Anderson, H. Primakoff, Phys. Rev. 152, 1295 (1966)
- 2. L. Stodolsky, Phys. Rev. Lett. 26, 404 (1971)
- 3. V. Budnev, I. Ginzburg, G. Meledin, V. Serbo, Phys. Rep. 15, no. 4, 181 (1975).

 $\gamma\gamma \rightarrow \pi^+\pi^-$ data from Mark II.

J. Boyer, et al., Phys. Rev. D 42, 1350 (1990).

Integrate $d^2\sigma/d\Omega dM$ over $Q^2 < .0035$ GeV² (about 90% of Primakoff cross section).

- The integral cross section is about 11 μb.
- Assuming 5% RL target and 10⁷ photons/s, the event rate is 380 Primakoff $\pi^+\pi^-$ per hour.
- With acceptance of 50%, can reproduce Mark II statistics every 2 hours

Unfortunately, cross sections for $\gamma\gamma \rightarrow \mu^+\mu^-$ are about ×10 bigger than $\pi^+\pi^-$

FIG. 1. Predicted two-photon cross sections for pion pairs and lepton pairs. The predictions for lepton pairs are from a Monte Carlo calculation. The prediction for pion pairs is that of Morgan and Pennington (Ref. 15), where the pion-pair cross section consists of a nonresonant continuum and the large $f_2(1270)$ resonance. The observed peak of the $f_2(1270)$ is shifted due to interference with the continuum.

Cross sections for $\gamma\gamma \rightarrow \mu^+\mu^-$

Figure 2.2: Two-photon subprocess. Shown are the t-channel (right) and the u-channel (left) contribution.

Neglecting the muon mass: Cross section peaks in forward and backward directions

$$\frac{d\sigma}{dt} = \frac{2\pi\alpha^2}{s} \left(\frac{u}{t} + \frac{t}{u}\right)$$

Exact expression is given in Bjorken and Drell, *Relativistic Quantum Mechanics*, see "Applications: Pair Annihilation into Gamma Rays"

Response of lead-glass cerenkov counters to charged pions

Simulated response

Figure 3: Distribution of the ratio of the energy deposited E and momentum p for ϵ , π and μ of 5 GeV/c momentum.

0

Performance of F101 Radiation Resistant Lead Glass Shower Counters, Avakian et al., NIM

Consider using a muon veto counter and a Cerenkov counter for the experiment.

- For 2.5 GeV muons in lead, dE/dX ~ 15 MeV/cm, stopping distance ~ 1.5 m
- Hadronic interaction length in lead $\lambda_H \sim 17$ cm
- FCAL has about 1.5 hadronic interaction lengths
- To contain hadron showers probably want total length of at least $5\lambda_{H}$
- \bullet The transverse size of a hadron shower is of order $\lambda_{H_{,}}$ whereas a muon is a single track.
- \rightarrow Install 60 cm of lead behind FCAL with MWPC readout

Overview:

- Complete study of kinematic fitting. Finalize resolution studies for $\phi_{\pi\pi}$, and $\theta_{\pi\pi}$, and the experimental bin size in $M_{\pi\pi}$
- Write event generators for $\gamma\gamma \rightarrow \mu\mu$ and $\gamma\gamma \rightarrow ee$, evaluate QED backgrounds.
- Study muon veto counter concept and geometry. GEANT simulation.
- Evaluate need for Cerenkov counter to reject e⁺e⁻ pairs