Differential cross section for Primakoff
photo-production of nttr-
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Integrate d?c/dQdM over Q%< .0035 GeV? (about 90% of Primakoff cross
section).
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Cross section summed over Q2 < 0.0035 GeV2:
approx. 90% of Primakoff
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 The integral cross section is about 11 ub.

* Assuming 5% RL target and 107 photons/s, the event rate is 380
Primakoff =t~ per hour.

» With acceptance of 50%, can reproduce Mark Il statistics every 2 hours



Unfortunately, cross sections for yy—pu*u are about x10 bigger than ntn-

a{yy -~ m m) (nh)

H R B -'----.'..\'L.E

.25 0.5 IEl.'i'fl 1 1.25 1.5
Mim ™) (GeV,/c")

FIG. 1. Predicted two-photon cross sections for pion pairs
and lepton pairs. The predictions for leplon pairs are from a
Monte Carlo calculation, The prediction for pion pairs is that
of Morgan and Pennington (Ref. 15}, where the pron-par cross
section consists of & nonresomant continuum and the large
101270} resonance. The observed peak of the f;01270) 15 shift-
ed due to interference with the continuum.



Cross sections for yy— pu-
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e b L Figure 2.2: Two-photon subprocess. Shown
1 1 / are the t-channel (right) and the u-channel
L_"‘.'_w 'I‘T_I ;f (left) contribution.
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Neglecting the muon mass: do 27z’ (u t
Cross section peaks in forward dt s (t u

and backward directions

Exact expression is given in Bjorken and Drell, Relativistic Quantum
Mechanics, see “Applications: Pair Annihilation into Gamma Rays”
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Figure 3: Distribution of the ratio of the ener
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Response of lead-glass cerenkov counters to charged pions

Performance of F101 Radiation Resistant Lead Glass Shower Counters, Avakian

et al., NIM



Consider using a muon veto counter and a Cerenkov counter for the
experiment.

* For 2.5 GeV muons in lead, dE/dX ~ 15 MeV/cm, stopping distance ~ 1.5 m
« Hadronic interaction length in lead A,~17 cm

* FCAL has about 1.5 hadronic interaction lengths

 To contain hadron showers probably want total length of at least 5,

* The transverse size of a hadron shower is of order A,; whereas a muon is a
single track.

e — |nstall 60 cm of lead behind FCAL with MWPC readout
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Overview:

Complete study of kinematic fitting. Finalize resolution studies for
¢.» and 0., and the experimental bin size in M_,

!

Write event generators for yy—uu and yy—ee, evaluate QED
backgrounds.

Study muon veto counter concept and geometry. GEANT
simulation.

Evaluate need for Cerenkov counter to reject e*e" pairs



