CDC Tracking Software

David Lawrence, JLab Sept. 8, 2008

How χ^2 is defined

The χ^2 is formed using the residuals between the fit and thrown parameters:

$$\chi^2 = (\Delta p_t/p_t)^2 + (\Delta \theta)^2 + (\Delta \phi)^2$$

If the components are independent and drawn from a Gaussian parent distribution, this would follow a "chi-squared" distribution with a well-known probability distribution (see next slide)

"Tracking Efficiency" compared to χ^2 cumulative distribution function

Pull distributions have non-Gaussian tails

Pulls with double Gaussian fits

Red = Tracking Results
Thick black = double gaussian
Thin black = gaussian (sampled)

Efficiency as a function of phase space

Expected Probability Density as a Function of the Integral Fraction

Probability Density from Tracking Results

Fitting pulls to core Gaussians

(i.e. smaller errors)

Next step

- There is some evidence that suggests the "bad" fits come from poor choices for the L-R ambiguity solution, particularly in the stereo
- If this is true, tracking based only on wirepositions would have broader pull distributions, but they would have Gaussian tails
- Tracking code is being reconfigured to make access to wire-based tracks easier. This is about 85% done.