
γγ → π0π0

Jose

February 20, 2020

1 The amplitude γ(∗)γ(∗) → π0π0

The relevant tensor is:

Vµν ≡= 〈p1, p2 | T (Jµ(x)Jν(y)) | 0〉 (1)

where Jµ is the EM current. Fourier transforming in x and y with momenta k1 and k2

respectively, we can write the most general form for Vµν which respects all symmetries:

Vµν =
5∑

i=1

Ai(s, t, u)T iµν (2)

where s, t, u are Mandelstam invariants and the tensor basis which respects gauge invariance
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is:

T 1
µν = k1 ν k2 µ − gµνk1 · k2

T 2
µν = k1 µ k1 ν − gµνk2

1 +
1

k2 · P
(k2 µ k

2
1 − k1 µ k1 · k2)

T 3
µν = k2 µ k2 ν − gµνk2

2 +
1

k1 · P
(k1 ν k

2
2 − k2 ν k1 · k2)

T 4
µν = PµPν −

1

k1 · k2

(k2 µ Pνk1 · P + k1 ν Pµk2 · P − gµνk1 · Pk2 · P )

T 5
µν = k1 µk2 ν −

1

k1 · k2

(k2
1k2 µ k2 ν + k2

2k1 µ k1 ν − gµνk2
1k

2
2) (3)

with P = p1 − p2, we have:

k1 · k2 =
s

2
− k2

1 − k2
2

k1 · P =
1

2
(u− t+ p2

1 − p2
2)

k2 · P = −1

2
(u− t+ p2

2 − p2
1) (4)

In the case p2
1 = p2

2, k1 · P = −k2 · P = 1
2
(u− t).

Bose symmetry requires that:

Tµν(P, k1, k2) = Tµν(−P, k1, k2)

= Tνµ(P, k2, k1) (5)

which corresponds also to the exchange u↔ t. This then implies that:

A2(s, t, u) = A3(s, u, t)

Ai(s, t, u) = Ai(s, u, t) i = 1, 4, 5 (6)
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2 π0π0 photoproduction

2.1 Kinematics in Lab frame

Definitions:

ω = |~k|
~p± = ~p1 ± ~p2, p± = |~p±|
~pf = ~k − ~p+, Ef =

√
~p2
f +M2 (7)

Spherical coordinates: choose ~k in z direction.

~p± = p±(sin θ± cosφ±, sin θ± sinφ±, cos θ±)

E2
1 =

1

4
(p2

+ + p2
− + 2p+ p− cosα) + M2

π

E2
2 =

1

4
(p2

+ + p2
− − 2p+ p− cosα) + M2

π

cosα = cos θ+ cos θ− + cos(φ+ − φ−) sin θ+ sin θ−

~p 2
f = p2

+ + ω2 − 2p+ ω cos θ+

E2
f = ~p 2

f +M2 (8)

so that E1 + E2 = ω +M − Ef depends only on p+ and θ+. From the above we get:

E1 − E2 =
p+p− cosα

ω +M − Ef
=

p+p− cosα

E1 + E2

(9)
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2.2 Differential cross section

dσ =
1

2(4π)5

| M |2
ωME1E2Ef

δ(ω +M − E1 − E2 − Ef ) d3p+d
3p−

=
1

2(4π)5

| M |2
ωME1E2Ef

δ(ω +M − E1 − E2 − Ef ) p2
+p2
−d cos θ+d cos θ−dφ+dφ−dp+dp−

using that p+ p− cosα = ~p+ · ~p− = E2
1 − E2

2 , we obtain:

δ(ω +M − E1 − E2 − Ef ) = 4
E1E2p−

(E1 + E2) | p2
− − (E1 − E2)2 |δ(p− − p̄−) (10)

where

p̄− =
(E1 + E2)

√
(E1 + E2)2 − p+

2 − 4M2
π)√

(E1 + E2)2 − p2
+ cos2 α

=

√
p+

2 +Wππ

√
Wππ − 4M2

π√
Wππ + p+

2 sin2 α
(11)

Here we defined the squared ππ invariant mass:

Wππ = (E1 + E2)2 − p2
+ = 2(ω2 +M2 + ωM)− 2ωp+ cos θ+ − 2(ω +M)Ef

=

(
−
√
M2 + p2

+ − 2p+ω cos θ+ + ω2 +M + ω

)2

− p2
+ (12)

The diff cross section then becomes:

dσ =
2

(4π)5

| M |2
ωMEf (E1 + E2) | p̄2

− − (E1 − E2)2 | p2
+p̄3
− d cos θ+d cos θ−dφ+dφ−dp+

=
2

(4π)5

| M |2

ωMEf | (E1 + E2)− p2+ cos2 α

E1+E2
|

p2
+p̄− d cos θ+d cos θ−dφ+dφ−dp+ (13)

where we can use:

E1 + E2 = ω +M − Ef
(E1 − E2)2 = (E1 + E2)2 − 4E1E2

E1E2 =

√
M4

π +
1

2
M2

π(p2
+ + p2

−) +
1

4
(p4

+ + p4
− − p2

+p2
− cos(2α)) (14)

It is convenient to express the cross section in terms of the invariant mass squared of the
two pion system, where Wππ > 4M2

π and

dp+ =
Ef

2(p+(ω +M)− ω(E1 + E2) cos θ+)
dWππ (15)
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One can then write Eq(10) as:

p̄− =
(E1 + E2)

√
Wππ − 4M2

π√
Wππ + p2

+ sin2 α
(16)

With some work one can replace everywhere p+ in terms of Wππ using Eq. (12). For
this, at a given ω and θ+, one needs that:

W 2
ππ − 4Wππ(M(M + ω) + ω2 sin2 θ+) + 4M2ω2 > 0 (17)

and one gets:

p+ =
ω cos θ+(2Mω +Wππ)± (M + ω)

√
−4M2 (Wππ − ω2)− 4MWππω + 2Wππω2 cos 2θ+ +Wππ (Wππ − 2ω2)

2(M + ω)2 − 2ω2 cos2 θ+
(18)

The next step is to determine the physical domain of integration in the angles and Wππ.
This is being worked out still.

Also, one should find which angular variables are the most convenient to use. This
requires that we know in detail the scattering amplitude’s angular dependencies in order to
make the choice.

2.3 Forward limit

We will be interested in the limit of large p+, small θ+ and small to moderate Wππ, which
implies also small α.. This also implies that We also want the limit of large ω. In that limit
we have:

p̄− =
(E1 + E2)

√
Wππ − 4M2

π√
Wππ + p̄2

+ sin2 α

p̄+ =
ω(Wππ + 2Mω) + (M + ω)

√
Wππ(Wππ − 4Mω) + 4M2(ω2 −Wππ)

2M(M + 2ω)

= ω − Wππ

2ω
− W 2

ππ

8Mω2
− W 2

ππ (2M2 +Wππ)

16M2ω3
+ · · ·

dp̄+ =

(
1

2ω
+

Wππ

4Mω2
+
Wππ

(
3Wππ

M2 + 4
)

16ω3

)
dWππ

Ef =
W 3
ππ

16M2ω3
+

W 2
ππ

8Mω2
+M

E1 + E2 = ω − W 2
ππ

8Mω2
− W 3

ππ

16M2ω3
(19)

5



3 Primakoff amplitude and cross section

The scattering amplitude is given by the general expression:

M = εµTµν(k, q, p−)
1

Q2
Jν (20)

Tµν is the Compton tensor, Q2 = −q2, and the target’s EM current in the Lab frame we will
neglect the spin of the target, and therefore we only care about the its charge:

Jµ = gµ0ZeF (Q2); note that we still need to use qνJ
ν = 0 (21)

where F (Q2) is the charge FF of the target.
Since we are interested in the region of the Primakoff peak, first we approximate the

amplitude by using the Compton tensor in the limit of real Compton scattering. This is
then directly obtained from the result provided by Bellucci et al. which will be valid for
the small Wππ regime. Later I will work out a more detailed analysis where the virtuality
Q2 is also included in the Compton tensor, and we will also need to give the amplitude for
intermediate values of Wππ (works of Oller and of Pennington).

For a scalar particle the (virtual) Compton tensor is written in terms of five transverse
tensors (see Bakker and Ji, Few-Body Syst DOI 10.1007/s00601-016-1172-3)

T µν =
5∑

n=1

An(s, t, u)T µνn

T µν1 = k · q gµν − kνqµ
T µν2 = (kµkρ − k2 gµρ)(qρq

ν − q2 gνρ)

T µν3 = (pµ−k
ρ − p− · k gµρ)(pν−qρ − p− · q gνρ)

T µν4 = (pµ−k
ρ − p− · k gµρ)(qρqν − q2 gνρ) + (kµkρ − k2 gµρ)(pν− qρ − p− · q gνρ)

T µν5 = (kµkρ − k2 gµρ)p−ρ p
σ
−(qσq

ν − q2 gνσ) (22)
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Here, using k2 = 0:

s = p2
+ = Wππ

u− t = 2k · p− = 2ω(E1 − E2 − p− cos θ−)

s+ t+ u = 2M2
π + q2 (23)

which allow us to write:

q · p− = −k · p− =
1

2
(t− u)

k · q =
1

2
(Wππ − q2)

(24)

In the limit k2 = q2 = 0:

T µν1 = k · q gµν − kνqµ
T µν2 = k · q kµqν
T µν3 = (pµ−k

ρ − p− · k gµρ)(pν−qρ − p− · q gνρ)

T µν4 = (pµ−k · q − p− · k qµ)qν + kµ(pν− k · q − p− · q kν)
T µν5 = k · p− q · p− kµqν (25)

where for real photons only T1 and T3 will contribute to the amplitude after contracting
with photon polarizations. The tensor we need in this limit, eliminating terms that are
proportional to kµ due to transversity with the incoming photon polarization:

Tµν = A(Wππ, t, u)(
1

2
Wππgµν − kνqµ) (26)

+ 2B(Wππ, t, u)((Wππ − q2)p−µp−ν − 2(k · p− qµp−ν + q · p−kνp−µ − gµνk · p− q · p−))

+ C(Wππ, t, u)(Wππ p
µ
− − 2 p− · k qµ)qν (27)

where p− = p1− p2. For the case where one contracts the Compton tensor with a conserved
current as it is the case hare, namely T µνJν where Jν is the target electric current. Since
qµJµ = 0, the term C(Wππ, t, u) does not contribute.

The low energy theorem for Compton scattering gives the following constraints:

α

2Mπ

(A+ 16M2
πB)|Wππ=0,t=M2

π
= απ

− α

2Mπ

A|Wππ=0,t=M2
π

= βπ (28)
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where απ βπ are the electric and magnetic polarizabilities respectively.
For the functions A and B there are low energy results in ChPT (Bellucci et al) at two

loops. The results are as follows:

A(s, t, u) = 4
Gπ(s)

sF 2
π

(s−M2
π) + UA + PA

B(s, t, u) = UB + PB (29)

where the functions and polynomials U and P are given in Bellucci’s et al., see Appendix A:

Gπ(s) = − 1

(4π)2

(
1 + 2

M2
π

s

∫ 1

0

dx

x
log(1− s

M2
π

x(1− x))

)
(30)

Use the integral in terms of dilogarithm functions:

∫ 1

0

dx

x
log(1− Ux(1− x)) = −Li2

(
1

2

(
U −
√
U − 4

√
U
))
− Li2

(
1

2

(
U +
√
U − 4

√
U
))

(31)
where in our case U must be taken to have an imaginary part +iε. At low energy Wππ <
(0.4GeV)2 the t dependence of the amplitudes A and B is very small and can be neglected.
We however should later consider also the effects of Q2 > 0 and check that claim.

3.1 Amplitude squared in Lab frame

|M|2 =
1

Q4
Z2e2F 2(Q2) |A(s, t, u)ω ε · q

− 2B(s, t, u)(((Wππ +Q2)(E1 − E2) + 2ω k · p−)ε · p− − 2(E1 − E2)k · p− ε · q)
=

1

Q4
Z2e2F 2(Q2) |K1 ε · q +K2 ε · p−|2 (32)

where

K1 = ωA(s, t, u) + 4B(s, t, u)(E1 − E2)k · p−
K2 = −2B(s, t, u)((Wππ +Q2)(E1 − E2) + 2ωk · p−) (33)

The relevant products we need to use are:

ε · q = −~ε · ~p+ = −p+ sin θ+ cosφ+

ε · p− = −p− sin θ− cosφ−

q2 = −Q2 = Wππ − 2ω(E1 + E2 − p+ cos θ+)

k · p− = ω(E1 − E2 − p− cos θ−)

q · p− = −k · p− = −ω(E1 − E2 − p− cos θ−)

p2
− = 4M2

π −Wππ (34)
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In the case of unpolarized photon beam we get:

|M|2 =
1

2

1

Q4
Z2e2F 2(Q2) (−|K1|2p2

− + |K2|2Q2 + 2Re(K1K
∗
2) p− · k)

(36)

|M|2 =
1

Q4
Z2e2F 2(Q2) (Aω qµ − 2B (E1 − E2)((s+Q2 + q · p−)pµ− − 2k · p− qµ)

× (A∗ ω qµ − 2B∗ (E1 − E2)((s+Q2 + q · p−)p−µ − 2k · p− qµ)

=
e2Z2F (Q2)

2

Q4

(
Q2ω2

(
− | A |2 −16 | B |2 (E1 − E2)2

× ((E1 + E2) cos(θ−)

√
s− 2Mπ

2

p+
2 sin2(α) + s

− E1 + E2)2
)

+

(
ω(E1 + E2) cos(θ−)

√
s− 2Mπ

2

p+
2 sin2(α) + s

− E1ω + E2ω +Q2 + s

)

×
(

4Re(AB∗)ω2(E1 − E2)

(
−(E1 + E2) cos(θ−)

√
s− 2Mπ

2

p+
2 sin2(α) + s

+ E1 − E2

)

+ 16 | B |2 ω2(E1 − E2)2

(
(E1 + E2) cos(θ−)

√
s− 2Mπ

2

p+
2 sin2(α) + s

− E1 + E2

)2

+ 4 | B |2 (E1 − E2)2

(
(E1 + E2)2

(
2Mπ

2 − s
)

p+
2 sin2(α) + s

+ (E1 − E2)2

)

×
(
ω(E1 + E2) cos(θ−)

√
s− 2Mπ

2

p+
2 sin2(α) + s

− E1ω + E2ω +Q2 + s

)))
(37)

3.2 Amplitudes A and B for simulation

We need to have a parametrization which for now gives a sufficiently realistic description
for carrying out simulations. We present here a model for A(s, t, u) and B(s, t, u) based
on dispersion theory to take into account the FSI of the pions with addition of t- and u-
channel exchanges of resonances. At present there are many works with increasing level of
rigor, with the latest ones being quite complicated. So, for a first approximation we adopt
here one of the early models by Donoghue and Holstein (1994).

The Donoghue-Holstein model: premises of the model: 1) only S-wave ππ FSI are con-
sidered, which is accurate at small Wππ. 2) vector (also axial vector for the case of π+π−)
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exchanges in t- and u- channels of the γγ → ππ reaction. The latter give the t- and u-
dependency. For the neutral pions the model gives:

s A(s, t, u) = −2

3
(f0(s)− f2(s)) +

2

3
(p0(s)− p2(s))− s

2

∑

V=ρ,ω

RV (
t+M2

π

t−M2
V

+
u+M2

π

u−M2
V

)

B(s, t, u) = −1

8

∑

V=ρ,ω

RV (
1

t−M2
V

+
1

u−M2
V

) (38)

Here the subindices 0 and 2 indicate the Isospin state of the pion pair. fI(s) admit a
dispersive representation for which we need the I = 0 and 2 S-wave ππ phase shifts. In the
case of the neutral pions we only have ρ0 and ω exchanges, where here RV indicates the
coupling in the vertex V → γπ0. Here we use:

RV =
6M2

V

α

Γ(V → πγ)

(M2
V −M2

π)3
(39)

The functions pI(s) are known (given below by the model of resonance t- and u-channel
exchanges), are real for positive s and reproduce the smae discontinuity as fI(s) for negative
s .

The hard problem is to implement the dispersive representation for fI(s). We will ne-
glect inelasticities in the ππ FSI. The DH model implements the approach of Morgan and
Pennington who write a twice subtracted dispersion relation for the combination (fI(s) −
pI(s))/ΩI(s), which has only a discontinuity for s > 4M2

π and is otherwise analytic every-
where. ΩI(s) is the Omnès function given in terms of the corresponding ππ phase shift:

ΩI(s) = exp

(
s

π

∫ ∞

4M2
π

φI(s
′)

s′ − s
ds′

s′

)

ΩI(s > 4M2
π) = eiφI(s) exp

(
s

π

∫ ∞

4M2
π

φI(s
′)− φI(s)
s′ − s

ds′

s′
+
φI(s)

π
log

4M2
π

s− 4M2
π

)
(40)

where the phase π is related to the corresponding ππ phase shift: φ0(s) = θ(M −√s)δ0
0(s) +

θ(
√
s −M)(π − δ0

0(s)), where M is the mass of the f0 resonance. For I = 2 one can take
φ2(s) = δ2

0(s).
We have that:

fI(s) = pI(s) + ΩI(s)

(
cI + dI s−

s2

π

∫ ∞

4M2
π

pI(s
′)=(Ω−1

I (s′))
ds′

(s′ − s)s′2
)

(41)

Finally, the functions pI(s) are as follows:
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pI(s) = fBorn
I (s) + pAI (s) + pρI(s) + pωI (s)

pA0 (s) = pA2 (s) =
Lr9 + Lr10

F 2
π

(
s+

M2
A −M2

π

β(s)
log

1 + β(s) + sA/s

1− β(s) + sA/s

)

pρ0(s) =
3

2
Rρ

(
M2

ρ

β(s)
log

1 + β(s) + sρ/s

1− β(s) + sρ/s

)

pρ2(s) = 0

pω0 (s) = −1

2
pω0 (s) = −1

2
Rω

(
M2

ω

β(s)
log

1 + β(s) + sω/s

1− β(s) + sω/s
− s
)

(42)

where Lr9 and Lr10 are the renormalized O(p4) LECs and given by: Lr9 +Lr10 = 1.43± 0.27×
10−3, and:

si = 2(M2
i −M2

π)

Rω = 1.35/GeV 2; Rρ = 0.12/GeV 2

β(s) =

√
s− 4M2

π

s
(43)

Numerical implementation: we need a simple functional parametrization of the phase
shifts (in progress).

3.3 Parametrization of the S-wave ππ phase shifts

The following figures show the present knowledge of the relevant phase shifts:
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Hyams et al.
Protopopescu et al.

Figure 7: I = 0 S–wave phase shift. The full line results with the central values
of the scattering lengths and of the experimental input used in the Roy equations.
The shaded region corresponds to the uncertainties of the result. The dotted lines
indicate the boundaries of the region allowed if the constraints imposed by chiral
symmetry are ignored [6]. The data points are from refs. [49] and [50].

show the data points of the phase shift analyses given by Hyams et al. [49],
Protopopescu et al. [50], the solutions A and B of Hoogland et al. (ACM) [51]
and the one of Losty et al. [52], as well as the P–wave phase extracted from the
data on the reactions e+e− → π+π− and τ → νππ. For further information on
the S–wave phase shifts, we refer the reader to [53, 54].

The three central curves are described by the parametrization [55]

tan δI
ℓ =

√

1− 4M2
π

s
q2 ℓ

{
AI

ℓ + BI
ℓ q

2 + CI
ℓ q4 + DI

ℓ q
6
}(4M2

π − sI
ℓ

s− sI
ℓ

)
, (17.1)
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From Colangelo+Gasser+Leutwyler (2001)
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Figure 9: I = 2 S–wave phase shift. The full line results with the central
values of the scattering lengths and of the experimental input used in the Roy
equations. The shaded region corresponds to the uncertainties of the result. The
data points represent the two phase shift representations of the Aachen-Cern-
Munich collaboration [51] and the one of Losty et al. [52]

The value of the phase difference δ0
0 − δ2

0 at s = M2
K is of special interest, in

connection with the decays K → ππ. In particular, the phase of ϵ′/ϵ is determined
by that phase difference. Our representation of the scattering amplitude allows
us to pin this quantity down at the 3% level of acuracy:

δ0
0(M

2
K0)− δ2

0(M
2
K0) = 47.7◦ ± 1.5◦ . (17.4)

We add two remarks concerning the comparison with the P–wave phase shift
extracted from the e+e− and τ data. First, we note that the agreement at 0.8 GeV
is enforced by our approach: In the Roy equation analysis, the value of the phase
shift at that energy represents an input parameter and we have made use of those
data to pin it down. Once that is done, however, the behaviour of the phase shift
at lower energies is unambiguously fixed: Chiral symmetry determines the two

34
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mass and so, as discussed in Sec. IVC, absorbable in the
coupling functions a;(s). It is for this reason that the pre-
vious simpler analysis' using earlier data with no accep-
tance corrections or partial-wave separation at all is quite
consistent with the present treatment Sec. V B.
Nevertheless, the fact that the f signal is so small in the

AFS results, while clearly seen in other ISR experiments
with larger t, , t2 ranges (Fig. 1) may indicate that the fPP
coupling has a more complicated t dependence than we
have naively assumed. Only by comparing the relative t
dependence of the S and D waves at both large and small
momentum transfers will we understand this dramatic
difference between the 3' D wave in the AFS experiment
in the f region and 47%%uo in that with the split-field mag-
net (SFM).

V. SOLUTIONS REQUIRED BY EXPERIMENT
A. The fit

In Sec. III we introduced a formalism to implement
two-channel unitarity. This is readily expressed in terms
of either the X matrix, or its inverse the M matrix, Eqs.
(3.14) and (3.15). Their real matrix elements we
parametrize by sums of poles plus simple polynomials in
s, the square of the dimeson mass, Eqs. (3.18) and (3.20).
These forms determine the u-matrix elements M,J, Eqs.
(3.14) and (3.15) and, through the channel-dependent
functions u;, the amplitudes for each production process,
Eq. (3.8). In this section we describe the outcome of an
extensive global fit of these forms to the I =0 S-wave
data on m~~m. m, ~~~EX selected in Sec. III C and the
cross section for ~~,KK production in the AFS experi-
ment discussed in Sec. IV.
In general, we have not concerned ourselves with the

fact that the experimental results are binned. In fitting,
we have treated each datum as though it represented the
value of the experiment at the bin's mean energy value.
This is appropriate for smoothly varying amplitudes.
However, in the case of the AFS results in the neighbor-
hood of 1 GeV, for both ~~ and EK channels, ' we have
actually averaged the parametrizations over the bin
widths, using Simpson s rule, when comparing with these
data. This correctly allows for any rapid variation in the
M-, and consequently ~ -, matrix elements in this region.
We have found many equally good fits to all the 258 data
in the mass range from ~~ threshold up to 1.7 GeV.
These are characterized by their type of parametrization
and denoted accordingly by K&, K3, and M fits.
In terms of the K matrix of Eqs. (3.14) and (3.18), we

find the most economical fits (in terms of the number of
parameters) to have at least one pole of the K matrix.
(Such a pole does not necessarily impose poles in the u
matrix, if the polynomial "background" is sufficiently
complicated. ) We find this pole always lies close to KK
threshold and the parameters of a typical one-pole solu-
tion (K~) are shown in Table I. The quality of the fit to
all the data is shown in the table and in Figs. 3—10.
Apart from the revised error on one datum discussed in
Sec. III C, no attempt has been made to weight particular
sets of data in their contribution to 7 by anything other
than the errors quoted in the rel| vant analysis of each
data set. The X /DF is then roughly 1.3. As seen from

Figs. 3—10 the major contribution to P comes from the
conflicting data sets on P&z, Fig. 8. Leaving out either of
these, i.e., exercising a prejudice as to which is correct, de-
creases the 7 /DF in our otherwise global fit. This exer-
cise favors Etkin et al. over Cohen et al. with a
7 /DF of only 1.09 compared with 1.23. The parameters
of the solution, K~ (Etkin), fitting the vrvr~KK results of
just Etkin et al. are listed in Table I also. However, we
find our amplitudes change so little between such alterna-
tives that for the most part we quote those of the
compromise global fit, ' Figs. 3—10. We will comment
later on this stability. Apart from the troublesome
mm~KE results, the data are very well fitted, as illustrat-
ed in Figs. 3—10, even, for example, the three data sets
on the n.~ phase, 5», above 1 GeV from the CERN-
Munich experiment as analyzed by Ochs and by Martin
and Pennington and from the vr m. results of Cason
et al. Though these are not exactly consistent, the fit
has found a very satisfactory smooth track through these
data, see Figs. 4 and 6.
As already remarked in Secs. I and IV, the input of the

AFS double-Pomeron results is a severe constraint on the
solution, not just on the couplings n;, for which quadratic
forms have been used [Eqs. (3.8) and (3.21)], but on the
strong-interaction amplitudes M]& and u &2. The AFS
data tightly restrict how the amplitudes develop though
the XK threshold region. This is reflected in the much
more striking and stringent conclusions we will be able to
deduce from this analysis than was previously possible us-
ing just elastic hadronic reactions. Notice the shoulder at
M-0.9 GeV before the steep fall in Fig. 9. This is an
important feature of both the AFS data' and all our fits

360
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240-

~ 180

0 0
120

0.4 0.6 0.8 1.0 1.2 1.4
M (GeV)

FIG. 3. The I =0 S-wave phase shift 6O for ~~ scattering
(denoted 5& ~ in the text) from the CERN-Munich group (Ref.
29). The hatched band represents the continuation down to
threshold provided by the Roy equations (Ref. 33). The curve
shows a fit typical of all our solutions.
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Fig. 5. Di!erent data sets for the S-wave in the I = 2 channel and curves that we have used as input in the Roy
equation analysis.

"ve di!erent parametrizations that we will use as input. The central one is our best "t to the
data of the Amsterdam–CERN–Munich collaboration (ACM) [54] solution B (which we call
from now on ACM(B)) with a parametrization !a la Schenk [66]. To cover the rather wide
scatter of the data, we have varied the input in this channel, using the "ve curves shown in
the "gure, together with !2

0 = 1 (note that for the Roy equation analysis, only the value of the
scattering length a 2

0 and the behaviour of the imaginary part above 0:8 GeV matter).

8. Numerical solutions

In the preceding section, the input required to evaluate the r.h.s. of our system of equations
was discussed in detail. In the present section, we describe the numerical method used to solve
this system and illustrate the outcome with an example.

8.1. Method used to "nd solutions

We search for solutions of the Roy equations by numerically minimizing the square of the
di!erence between the left and right hand sides of Eq. (5.1) in the region between threshold and
0:8 GeV. As we are neglecting the inelasticity in this region, the real and imaginary parts of tI‘ (s)
are determined by a single real function, the phase "I‘ (s). In principle, the minimization should be
performed over the whole space of physically acceptable functions {"0

0(s); "1
1(s); "2

0(s)}, but for
obvious practical reasons we restrict ourselves to functions described by a simple parametriza-
tion. We will use the one proposed by Schenk some time ago [66], allowing for an additional

B. Ananthanarayan et al. / Physics Reports 353 (2001) 207–279 239

Fig. 10. Comparison of our Roy solutions for di!erent values of the scattering lengths with the data of the
Geneva–Saclay collaboration, Rosselet et al. [70]. The full, dash–dotted and dashed lines correspond to the points
S0; S2 and S3 in Fig. 7.

Fig. 11. Comparison of our Roy solutions with the data on !2
0 obtained by the ACM collaboration [54] and by

Losty et al. [52]. The full, dash–dotted and dashed lines correspond to the points S0; S2 and S3 in Fig. 7.
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We fit to the phase shift data the following forms:

δI0(s) = arcsin


 ΓI

2

√
(
√
s−MI)2 +

Γ2
I

4


+

N∑

n=0

an(
√
s)n (44)

where we include one single resonance for each I = 0, 2.
For the available data we need only up to N = 3 for I = 0, with the result:

M0 = 0.994GeV ; Γ0 = 0.0624GeV

a0 = −1.439; a1 = 6.461/GeV ; a2 = −5.529/GeV 2; a3 = 2.022/GeV 3 (45)

For the case I = 2 one finds that the resonance term is not needed at all and a good fit is
provided with N = 3 with the result:

a0 = −0.878; a1 = −0.611/GeV ; a2 = −0.083/GeV 2; a3 = 0.115/GeV 3 (46)

The figure shows the parametrized phase shifts along with the corresponding phase φ0
I .
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The resulting Omnès functions are shown in the figure, where the red curves show the real
part and blue the imaginary ones.:
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We used the integration in s′ up to 1.4 and 2.4 GeV 2 to see how sensitive is the Omneès
function to the high energy inputs of the phase shifts. In red the real parts and in blue the

imaginary parts.

The amplitude A(s, t, u) in the limit of real photons, and in the approach followed here
of keeping only the S-wave, becomes only a function of s. Using the results obtained here
and and a fit to the available cross section (see the next section), one obtains that A is real

13



Figure 1: Red: Re(A(s)), Blue: Im((A(s))

and given by the figure below. We are working on a parametrization at this point.

Still working on improving parametrization of the Amplitude A
Result of one parametrization: since we are using the S-wave approximation, there is no

dependency on t, so:

ReApar(s) = − 0.0401449

|s− (0.99 − i 0.027)| − 3.42726 s

+ 0.00399002 e5.90315(s−1.48297)2 − 0.00202174 e8.10357(s−1.37113)2 + 0.000320964e9.36221(s−1.32585)2

+ 0.000249196 e9.41227(s−1.31682)2 + 0.000158993 e8.04004(s−1.25463)2

+ 531.611 tanh(21.5329(s− 0.00549155))− 522.191 (47)

The imaginary part of A is very small so we neglect it for now.
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4 γγ → π0π0 Cross section

For real photons the γγ → π0π0 cross section becomes:

σγγ→π0π0(| cos θ| < Z)(s) =
πα2

EM

s2

∫ Z

−Z

1

4

√
s(s− 4M2

π) (48)

× (| A(s, t, u)s−M2
πB(s, t, u) |2 +

1

s2
(M4

π − t u)2 | B(s, t, u) |2)dz

where z = cos θ and CM we have: s+ t+ u = 2M2
π , and t = M2

π − s
2

+ 1
4

√
s(s− 4M2

π)z.
Note that for both amplitudes A and B the dominant component for s < 1 GeV 2 is the

S-wave, so that we have A = A(s) and B = B(s). Using that

t u = 1
16

(
s z2

(
4Mπ

2 − s
)

+ 4
(
s− 2Mπ

2
)2
)

where cos θ = z.

σγγ→π0π0(| cos θ| < Z)(s) =
πα2

EM

s2

Z

2

√
s(s− 4M2

π) (49)

× (| A(s)s−M2
πB(s) |2

+
1

s2

(
M4

π −
1

16
(
Z2

3
s(4M2

π − s) + 4(s− 2M2
π)2)

)
| B(s) |2)

We fit to the Cristal Ball data the parameters c0, d0, c2, d2 which give in corresponding
units:

c0 = −0.529

d0 = −2.033

c2 = 0.953

d2 = −1.271

(50)

The result is shown in the figure:

In progress: a fit to a wider range in s to include if possible the region of the f0

5 Possible hadronic exchange background

The possible hadronic t-exchange that can contribute to the π0π0 coherent photoproduction
will involve ρ0 and ω exchanges. We need to model this.
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Figure 2: γγ → π0π0 cross section integrated for the scattering angle | cos θ| < 0.8. Data
from the Cristal Ball

6 Appendix A

6.1 UA and PA in ChPT (Bellucci et al)

UA =
2

sF 4
π

Gπ(s)
(
(s2 −M2

π)Jπ(s) + C(s)
)

+
`∆

24π2F 4
π

(s−M2
π)Jπ(s)

+
`2 − 5/6

144π2sF 4
π

(s− 4M2
π)(H(s) + 4(sGπ(s) + 2M2

π(G̃π(s)− 3J̃π(s)))d2
00)

PA =
1

(4π)2F 4
π

(a1M
2
π + a2s) (51)

where the constants a1 and a2 need to be fitted, and:

Jπ(s) = − 1

(4π)2

∫ 1

0

dx log(1− s

M2
π

x(1− x)) =
2

(4π)2


1−

√
4− s

Mπ
2 tan−1

( √
s

Mπ2√
4− s

Mπ2

)

√
s

Mπ
2




J̃π(s) = Jπ(s)− sJ ′π(0)

G̃π(s) = Gπ(s)− sG′π(0)

Hπ(s) = (s− 10M2
π) Jπ(s) + 6M2

π Gπ(s) (52)
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and:

C(s) =
1

48π2

(
2(`1 −

4

3
)(s− 2M2

π)2 +
1

3
(`2 −

5

6
)(4s2 − 8sM2

π + 16M4
π)

− 3M4
π`3 + 12M2

π(s−M2
π)`4 − 12sM2

π + 15M4
π

)

d2
00 =

1

2
(3 cos2 θCM − 1) (53)

where θCM is the γγ∗ → ππ scattering angle in CM, and the low energy constants `i are
known.

Note that the amplitude depends only on s except for the term d2
00. It is possible that

this term will be entirely irrelevant at low Wππ (need to check).

6.2 UB and PB

UB =
`2 − 5

6

288π2F 4
πs
Hπ(s)

PB =
b

(4πFπ)4
(54)

where b is fitted.

7 Appendix B

CM kinematics
Useful invariants in Lab frame:

q = p+ − k
εµqµ = −~ε · ~q = −~ε · ~p+ = −p+ sin θ+ cosφ+

εµp−µ = −~ε · ~p− = −p− sin θ− cosφ−

kµJµ = ωZeF (Q2)

kµp+µ = kµqµ = ω(E1 + E2 − p+ cos θ+)

qµp+µ = s− kµp+µ

Q2 = −s+ 2 kµp+µ = −s+ 2ω((E1 + E2)− p+ cos θ+)

= 2ωp+(1− cos θ+) + s(
ω

p+

− 1)− s2 ω

4p3
+

+ · · ·

qµp−µ = −kµp−µ = −ω(E1 − E2 − p− cos θ−) (55)

s = 4 ω2
CM = p+ · p+

−1

2

√
s(s− 4M2

π) cos θCM = k · p− = ω(E1 − E2 − p− cos θ−) (56)
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where we can use:

E1 + E2 =
√
s+ p2

+

E1 − E2 =
p+

√
s− 4M2

π cosα√
s+ p2

+ sin2 α
(57)
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8 Relation between the amplitudes of Donoghue-Holstein

and Bellucci-Gasser-Sainio

The two basis Compton tensors are related by:

TDH1µν = −TBGS1µν

TDH2µν =
1

4
TBGS1µν +

1

8s
TBGS2µν (58)

and the amplitudes are related as follows:

ADH = −ABGS − 2sBBGS

BDH = 8sBBGS (59)

HOMEWORK

1) Study the photon polarization dependency. (Dai & Pennington studied the effect of
polarization)

2) Another way to provide the amplitude A: spline or table.

19


