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The relevant tensor is:

Viw == (p1,p2 | T(Ju(2) o (y)) | 0) (1)

where J, is the EM current. Fourier transforming in = and y with momenta k; and ks
respectively, we can write the most general form for V), which respects all symmetries:
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V,uu = Z Ai(sa t7 U)T;w (2)

=1

where s, t, u are Mandelstam invariants and the tensor basis which respects gauge invariance
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T, = ki k2u_g,ul/k1'k2

o
T, = k:lﬂkll,—gwkf—i-kz%(kgukf—kmkl-kZ)
T = baphey = gk 4 o 1 o by o)
T, = PMP,,—ﬁ(lsg“Pyk;l-P+k1,,P“k:Q-P—ngl-Pk;g-P)
TS, = kl,ﬂm—ﬁ(/gmkwmgmkly—gﬂyxﬁfz{g)
with P = p; — po, we have:
ko ke = g—kf—kg
k- Po= %(u—tﬂ)?—pi)
kp- Po= —%(u—tﬂﬁ—pf)

In the case p? = p3, ki - P = —ky- P = S(u—1).
Bose symmetry requires that:

T,uz/(pvklka) = T,uzz(_Pa klakQ)
- Tuu(kaQakl)

which corresponds also to the exchange u <> t. This then implies that:

A2(37t7u) = A3(S,U,t)
Ai(S,t,U) = Ai(S,U,t) 221,4,5



2 7’7" photoproduction

2.1 Kinematics in Lab frame

Definitions:

Spherical coordinates: choose

pr =

E? =

E; =

cosa =

ﬁfQ =

2

Ey =

so that By + Ey = w + M — Ey depends only on p; and 6. From the above we get:

Er

-

\V

k in z direction.

P (sin 04 cos ¢, sin O sin ¢, cos 0. )

1
;(P%+p2 +2p, p cosa) + M

1
7 (P31 +p2 = 2py p cosa) + M7

cos . cosO_ + cos(py — ¢_)sinf, sinf_
pi + w? — 2p4 weos b,
ﬁf2 + M2

P+p-cosa  pip-CcOSQ
w+M-E; E +FE,




2.2 Differential cross section

1 | M |2 3, 13
= M —FE,— FEy, — E;) d’pid’p_
o = Sy oME BBt 1= By By) dipidp
L | M §(w+ M — E| — Ey — Ef) pipidcosf,dcosf_do.dp_dp,dp_
2(47?)5 U.)MElEQEf =

using that p; p_ cosa =g, - p_ = E} — E2, we obtain:

ElEgp_

(w+M—-—FE,—FE,—FE;)=4
( ! ? f) (Ey + E) | Pz_—(E1—E2

)2 |(5(p, - 5*) (10>

where

(Er + E)\/(E1 + Es)? — py 2 — 40M2)
V/ (E1 + E3)? — p2 cos?
B War W 1T
\/VV7r7T + p2sin®a

(11)

Here we defined the squared 77 invariant mass:

Wer = (Ey+ Ep)? —pL =2(w” + M? + wM) — 2wp,. cosly — 2(w+ M)E;

2
— (—\/M2+pi—2p+wcos¢9++w2+M+w) —pa (12)

The diff cross section then becomes:

2 | M |? 2 =3
V= Ty GME B T B |5 (B G| PP deostedeost-dododp.

2 2
= [ M p2p_ dcosfidcosf_dpdp_dp. (13)

5 2 cos? o
W) WME; | (By+ Es) — 0 |

where we can use:

Ei+E = wt+M-—FE
(Ey — Ey)? = (By+ Ey)® —4E\E,

1 1
BiEy = \[M2s M2 ) ¢ Lttt con(za)) (1)

It is convenient to express the cross section in terms of the invariant mass squared of the
two pion system, where W, > 4M? and
Ly

dpy = AW 15
P = Ao M) — By + By cosds) (15)
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One can then write Eq(10) as:

(E1 + Eo)/Wyn — 4M?2 (16)

\/I/V7r7r + p2 sin®

With some work one can replace everywhere p, in terms of W, using Eq. (12). For
this, at a given w and 6., one needs that:

W2 — dW,n(M(M + w) + w?sin? 0, ) + 4M>w? > 0 (17)

and one gets:

wcosbp (2Mw + Win) £ (M + w) \/—4M2 (Wan — w?) = AMWrw + 2Worw? cos 20 + Won (Wrr — 2w?)

P+ = 2(M + w)? — 2w? cos? 6
(18)

The next step is to determine the physical domain of integration in the angles and W,.
This is being worked out still.

Also, one should find which angular variables are the most convenient to use. This
requires that we know in detail the scattering amplitude’s angular dependencies in order to
make the choice.

2.3 Forward limit

We will be interested in the limit of large p,, small 6, and small to moderate W, which
implies also small c.. This also implies that We also want the limit of large w. In that limit
we have:

(Ey + Es)/Wor — M2

p. =
\/I/V7r7r + p2 sin® «
o w(Wer +2Mw) + (M + W)/ Wor(Wir — AMw) 4 AM?(w? — Wy
Pr = 2M (M + 2w)
W W2 W2 (2M? 4+ W)
N 2w 8Muw? 16 M2w3
1 W W (205 + 4)
dp, = | — ki M AW,
P+ <2w T T 16w°
w3 W2
E — T iy M
I 1602’ T 8Mw?
2 3
El + EQ - w Wﬂ'ﬂ' . W7r7r (19)

CSMw? 16 M2w3



3 Primakoff amplitude and cross section

Y 6

6“,‘\\2% / t

A=
fecek

The scattering amplitude is given by the general expression:

M = EHT/.LV(]{:’ q,P- )@‘]V (20)

T, is the Compton tensor, @* = —¢?, and the target’s EM current in the Lab frame we will
neglect the spin of the target, and therefore we only care about the its charge:

Jt = g"ZeF(Q?); note that we still need to use q,J” = 0 (21)

where F'(Q?) is the charge FF of the target.

Since we are interested in the region of the Primakoff peak, first we approximate the
amplitude by using the Compton tensor in the limit of real Compton scattering. This is
then directly obtained from the result provided by Bellucci et al. which will be valid for
the small W, regime. Later I will work out a more detailed analysis where the virtuality
@Q? is also included in the Compton tensor, and we will also need to give the amplitude for
intermediate values of W, (works of Oller and of Pennington).

For a scalar particle the (virtual) Compton tensor is written in terms of five transverse
tensors (see Bakker and Ji, Few-Body Syst DOI 10.1007/s00601-016-1172-3)

5
T = ZAnstuT“”

T — kg g — kg
= (k“k'” K 9")(9.0" = ¢ g)

T = (p'k* —p_k g") (0 gy — - q gY)

" = (pMk" - p -k ") (0,0" — ¢* g;) + (K'EP — k2 ¢**)(p” ¢, —p—- q g})
o= (KK =k g, 17 (00" — ¢° 97) (22)
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Here, using k? = 0:

s = pi=Wer
u—t = 2k-p_ =2w(E; — FEy —p_cosf_)
s+t+u = 2M?2+ ¢ (23)

which allow us to write:
1
q-p—- = —k-p_= Q(t—u)

k’(] = _(er_q2)

(24)

In the limit k? = ¢% = 0:

" = k-qg™ —K'q"
" = k-qk'q

T = ('K —p_-k g") (0" qp — D-- 0 g.)
T = (k- a—p-kq)g Rk g —p-q k)
Tslul — k_p_q'p_k:llqu (25)

where for real photons only T} and T3 will contribute to the amplitude after contracting
with photon polarizations. The tensor we need in this limit, eliminating terms that are
proportional to k* due to transversity with the incoming photon polarization:

1

T,ul/ - A(era tu u)(éwﬂ'wgm/ - kl/q,u,) (26)
+ 2B(Wam, t, 0)(War — ¢®)p—pp— — 2(k - p_ qup— +q-p_kup_,. — gk -p— q-p_))
+ C(Wer, t,uw)(Wan . —2p_- k ¢")q” (27)

where p_ = p; — po. For the case where one contracts the Compton tensor with a conserved
current as it is the case hare, namely T"".J, where .J, is the target electric current. Since
¢"J, =0, the term C(Wy,,t,u) does not contribute.

The low energy theorem for Compton scattering gives the following constraints:

«
2M. (A+16MB)|w,,~o=mz =
«
—oap AlWe=oi=mz = B 28)



where ;. [, are the electric and magnetic polarizabilities respectively.
For the functions A and B there are low energy results in ChPT (Bellucci et al) at two
loops. The results are as follows:

G
A(S,t,U) = 4 8;5)(8—M3)+UA+PA

B(s,t,u) = Up+ Pp (29)
where the functions and polynomials U and P are given in Bellucci’s et al., see Appendix A:

Go(s) = —(4%)2 <1 +2- /01 df log(1 — Migx(l - g;>)> (30)

Use the integral in terms of dilogarithm functions:

/01 dg log(1 — Uz(1 — x)) = —Li (% (U - mw)) ~Liy (% <U + mm))

(31)
where in our case U must be taken to have an imaginary part +ie. At low energy W, ., <
(0.4GeV)? the t dependence of the amplitudes A and B is very small and can be neglected.
We however should later consider also the effects of Q2 > 0 and check that claim.

3.1 Amplitude squared in Lab frame

MP = HZEFQ) Al twwe g
— 2B(s,t,u)((War + Q*)(Er — Bo) + 2wk - p_)e - p- — 2(Ey — Ep)k - p- € q)
= GIZEP@) Ky gt Kyep (32)
where

Ky, = wA(s,t,u) +4B(s,t,u)(E; — E2)k - p_
Ky, = —2B(s,t,u)(Wer + Q*)(Ey — Ey) + 2wk - p_) (33)

The relevant products we need to use are:

€-q = —€-pp=—pysinf,coso,
€-p. = —p_sinf_coso_
¢ = —Q° =Wy —2w(Ey + Ey — py cosby)
k-p. = w(E; — FEy—p_cosf_)
q-p- = —k-p.=—-w(F —FEy—p_cosf_)
I 4M3 — Win (34)



In the case of unpolarized photon beam we get:

11
M[* = 5@22621”2(@2) (= E0*p? + | *Q% + 2Re(K K3) p-- k)
(36)
M = iZ%?F?(Q?) (Awg" —2B (B, — Bo)((s + Q* 4+ q - p-)p"* — 2k - p_ ¢"
= o q 1 — Ey)((s q-p-)pt p-q")
X (A*wq, —2B* (Ey — FEy)((s+Q*+q-p)p_,—2k-p_q,)
2721 (02 2

— e@#(@%ﬂ(_ | A |2 —16 | B |2 (E1 —E2)2

s — 2M,* 9
% ((By+ Ey) cos(e_)\/ e B») )

- 2

+ | w(E; + Ey)cos(6) 5 _ gMﬂ —EBw+ Fw+Q*+s

py2sin®(a) + s

. 2
« [ 4Re(AB 2 (Ey - By) [ —(Br + B) cos(0_) | ——2M= g _ g,
p.2sin®(a) + s

2

— 2M, 2
> B+ EQ)

p,2sin?(a) + s

+ 16 | B |* w*(E) — Ey)? ((El + E») cos(@)\/

(B + E»)? (2M,”° — )

p2sin®(a) + s

X (w(E1 + E,) cos(@)\/p+2 (@) 15 Eiw + Byw + Q° + s) )) (37)

3.2 Amplitudes A and B for simulation

+ 4|B|* (B - By’ ( + (Ey — E2)2>

We need to have a parametrization which for now gives a sufficiently realistic description
for carrying out simulations. We present here a model for A(s,t,u) and B(s,t,u) based
on dispersion theory to take into account the FSI of the pions with addition of t- and u-
channel exchanges of resonances. At present there are many works with increasing level of
rigor, with the latest ones being quite complicated. So, for a first approximation we adopt
here one of the early models by Donoghue and Holstein (1994).

The Donoghue-Holstein model: premises of the model: 1) only S-wave w7 FSI are con-
sidered, which is accurate at small W,,. 2) vector (also axial vector for the case of 77 ™)
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exchanges in t- and u- channels of the vy — n7 reaction. The latter give the t- and u-
dependency. For the neutral pions the model gives:

S M2 u M2
SA(sh) = =S 0) ~ o) + 5 00(s) ~ pale) = 5 D0 R(EyE + i)
V=pw
1 1 1
B(S,t,U) = _gvzzp’va<t—M‘2/ + U—M‘Z/) (38)

Here the subindices 0 and 2 indicate the Isospin state of the pion pair. f;(s) admit a
dispersive representation for which we need the I = 0 and 2 S-wave w7 phase shifts. In the
case of the neutral pions we only have p, and w exchanges, where here Ry indicates the
coupling in the vertex V — y7°. Here we use:

_6MY T(V — 7)

R
YT o (M- M2)

(39)

The functions p;(s) are known (given below by the model of resonance t- and u-channel
exchanges), are real for positive s and reproduce the smae discontinuity as f;(s) for negative
S .

The hard problem is to implement the dispersive representation for f;(s). We will ne-
glect inelasticities in the 77 FSI. The DH model implements the approach of Morgan and
Pennington who write a twice subtracted dispersion relation for the combination (f7(s) —
p1(5))/Qs(s), which has only a discontinuity for s > 4M? and is otherwise analytic every-
where. €;(s) is the Omnes function given in terms of the corresponding 7 phase shift:

Q(s) = exp (i * ¢1(5’)d_<‘3’)

T Japz 8" —s 8

. & ") — ds’ ¢[(S) 4M2
Q 4M2 — z¢1(s) f ¢I(S ) ¢I(S) e 1 4 40
15> x) ¢ P T Jans2 s —s s' + T 8 s —4M? (40)

where the phase 7 is related to the corresponding 77 phase shift: ¢g(s) = (M —+/5)d3(s) +
0(v/s — M)(m — 63(s)), where M is the mass of the fy resonance. For I = 2 one can take

Pa(s) = 93(s).
We have that:

) = w4 (o) (s =5 [ e )

(s' —s)s"

Finally, the functions p;(s) are as follows:
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pi(s) = [77"(s) +p7(s) + pi(s) + i (s)

=it = S (o g B )
oo = 3 ( My 1HB)+s,/s
W=t (/3(5)1 g1—6(5)+5p/8)
ph(s) = 0
=i - (Bt ) W

where Lj and L7, are the renormalized O(p*) LECs and given by: L§ + L}, = 1.43 £0.27 x
1073, and:

R, = 135/GeV? R,=0.12/GeV?

sy = (43)

Numerical implementation: we need a simple functional parametrization of the phase
shifts (in progress).

3.3 Parametrization of the S-wave 77w phase shifts

The following figures show the present knowledge of the relevant phase shifts:

(degrees)

0
0

® ACM (A)data
= ACM (B) data
¢ Lostyetal.data| |

9,

5,(degrees)

E(GeV)

Figure 7: I = 0 S-wave phase shift. The full line results with the central values [ o
of the scattering lengths and of the experimental input used in the Roy equations. r N
The shaded region corresponds to the uncertainties of the result. The dotted lines 20 [ 1y

indicate the boundaries of the region allowed if the constraints imposed by chiral T S S S R N R
03 04 05 0.6 0.7 08

symmetry are ignored []. The data points are from refs. [fd] and [50].
E(GeV)
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0.0
360
-10.0
300
=200
240
=300
—_ | | | |
o 180 02 04 06 08 0 12 14
3 E(GeV)
co Fig. 5. Different data scts for the S-wave in the 7 =2 channel and curves that we have used as input in the Roy
w equation analysis.
120
60
L
0
04 06 08 10 1.2 14 2
M (GeV) guo—
i
FIG. 3. The I =0 S-wave phase shift 8) for 77 scattering s
(denoted 8,; in the text) from the CERN-Munich group (Ref.

29). The hatched band represents the continuation down to
threshold provided by the Roy equations (Ref. 33). The curve

shows a fit typical of all our solutions. Fig. 11. Comparison of our Roy solutions with the data on &3 obtained by the ACM collaboration [54] and by
Losty et al. [52]. The full, dashdotted and dashed lines correspond to the points So, S; and S in Fig. 7.

We fit to the phase shift data the following forms:

6(s) = arcsin i —i—Zan(\/E)" (44)

2 (i-My+) =

where we include one single resonance for each I = 0, 2.
For the available data we need only up to N = 3 for I = 0, with the result:

My = 0.994GeV; Ty = 0.0624GeV
ag = —1.439;  a; = 6.461/GeV; ay = —5.529/GeV?; az = 2.022/GeV?  (45)

For the case I = 2 one finds that the resonance term is not needed at all and a good fit is
provided with N = 3 with the result:

ap = —0.878;a; = —0.611/GeV; ay = —0.083/GeV?; az = 0.115/GeV? (46)

The figure shows the parametrized phase shifts along with the corresponding phase ¢".
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The resulting Omnes functions are shown in the figure, where the red curves show the real
part and blue the imaginary ones.:
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0.0¢ s s A J 0.90 A : : :
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
s(G eV2 ) S(G eV?2 )

We used the integration in s’ up to 1.4 and 2.4 GeV? to see how sensitive is the Omnees
function to the high energy inputs of the phase shifts. In red the real parts and in blue the
imaginary parts.

The amplitude A(s,t,u) in the limit of real photons, and in the approach followed here
of keeping only the S-wave, becomes only a function of s. Using the results obtained here
and and a fit to the available cross section (see the next section), one obtains that A is real
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Figure 1: Red: Re(A(s)), Blue: Im((A(s))

and given by the figure below. We are working on a parametrization at this point.

Still working on improving parametrization of the Amplitude A
Result of one parametrization: since we are using the S-wave approximation, there is no
dependency on ¢, so:

0.0401449
Re Apar(s) = — . — 3.42726
€ Ao () s — (0.99 — i 0.027)] s
+0.00399002 5-90315(s—1.48297)* _ () 00202174 £3-10357(s—137113)% | () )0(320964¢"-36221(s—1.32585)
+0.000249196 ¢*1227(-131682) 4 () 000158993 ¢504004(s~1:25163)°

+ 531.611 tanh(21.5329(s — 0.00549155)) — 522.191 (47)

The imaginary part of A is very small so we neglect it for now.
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4 ~v — 7'7Y Cross section

0

For real photons the vy — 7%7° cross section becomes:

2 Z
1
0 ysnoo(| COSO] < Z)(5) = —EM / Vs — ) (48)

52

1
x (| A(s, t,u)s — MiB(s, t,u) +g(Mff —tw)® | B(s,t,u) [*)dz

where z = cosf and CM we have: s+t +u=2M2, and t = M2 — £ + 1,/s(s — 4M32)z.

Note that for both amplitudes A and B the dominant component for s < 1 GeV'? is the

S-wave, so that we have A = A(s) and B = B(s). Using that
tu= (s 22 (4002 = 5) +4 (s = 20,2)°)
where cosf = z.

2
TQapN £

G smino (| cOSO] < Z)(s) = SV/sls —4012) (49)

52

x (| A(s)s = MB(s) |

+ é (Mﬁ - %(%25(41\43 —5) +4(s — 2M§)2)> | B(s) ")

We fit to the Cristal Ball data the parameters ¢y, dy, c2, do which give in corresponding
units:

co = —0.529
dy = —2.033
co = 0.953

dy = —1.271

(50)

The result is shown in the figure:

In progress: a fit to a wider range in s to include if possible the region of the fy

5 Possible hadronic exchange background

The possible hadronic t-exchange that can contribute to the 7°7° coherent photoproduction
will involve p° and w exchanges. We need to model this.

15



10|

0(|Z<0.8)[nb]

1

0.3 0.4 0.5 0.6

s(GeVZ)

Figure 2: vy — 779 cross section integrated for the scattering angle |cosf| < 0.8. Data
from the Cristal Ball

6 Appendix A
6.1 Uy and P4 in ChPT (Bellucci et al)

2 l
U = —Gr(s) ((8* = M2)Ja(s) + C(5)) + g 5 (s = M2)Jels)
ly —5/6 2 20 A 7 2
+ m(s — AMZ)(H(s) + 4(sGr(s) + 2M(Gr(s) — 3Jx(s)))dgo)
1
Py = (im)2F (ay M? + ays) (51)
where the constants a; and as need to be fitted, and:
1 1 s 9 4— ]wsﬂ_z tal’lil ( 4M:£r2>
Je(s) = Ja(s) — sJ7(0)
Gr(s) = Gr(s)—sG.(0)
H.(s) = (s—10M?2) J.(s) +6 M2 G.(s) (52)
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and:
1 )

4 22, 1 2 2 4
C(s) = 172 (2(51 — §>(S —2M2)* + 5(62 — 6)(48 —8sM:> + 16M)

— 3N+ 120M2(s — M2)ly — 125M2 + 15M° )

1
dsy = 5(3 cos® Oopr — 1) (53)

where 0cy is the yy* — 77 scattering angle in CM, and the low energy constants ¢; are
known.

Note that the amplitude depends only on s except for the term d3,. It is possible that
this term will be entirely irrelevant at low W, (need to check).

6.2 Up and Pg

ly—2
- 2 6 g
Us 28872 F2s (5)
b
Py = 54
b (4mF, ) (54)

where b is fitted.

7 Appendix B

CM kinematics
Useful invariants in Lab frame:

qg = p+—k
e'q, = —€-§=—€-py=—pisinf;cospy
e'p_, = —€-p_=—p_sinf_cosgp_

k', = wZeF(Q?
k'piy = k'qu=w(Er+ By — pycosty)

prp = 5= K'py
Q> = —s+2k'py,=—s5+2w((E; + Ey) — pycosfy)
w w
— 2wp, (1 — cosh YooY g
wp4 (1 — cos +)+s(p+ )—s o +
¢'p—y = —K'p_y=—w(E — Ey —p_cosf_) (55)
S =ty =pe b

1

—5\/3(3 —4M2)cosbOcyy = k-p- =w(E; — FEy —p_cosf_) (56)
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where we can use:

Ei+Ey = \/S+P2+
— AM2
BB — Piv/S 7Tcosoz(57)

s+ p2sin®
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8 Relation between the amplitudes of Donoghue-Holstein
and Bellucci-Gasser-Sainio

The two basis Compton tensors are related by:

S
1 1
o0 = ZTfoSJrgTﬁfS (58)

and the amplitudes are related as follows:

ADH _ABGS _ QSBBGS

BPH — 8spBGS (59)

HOMEWORK

1) Study the photon polarization dependency. (Dai & Pennington studied the effect of
polarization)

2) Another way to provide the amplitude A: spline or table.
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