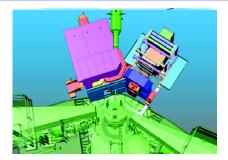
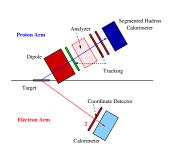
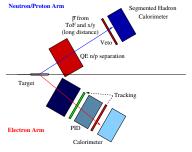
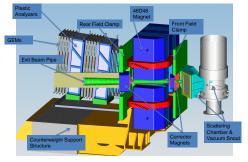
### Super Bigbite Software and Computing

Seamus Riordan Stony Brook University seamus.riordan@stonybrook.edu


November 10, 2016


- Project Overview and Scope
- Task Responsibilities
- Status and Timeline


# SBS Experimental Program


### Overview

- Super Bigbite program measures three nucleon elastic form factors to high Q<sup>2</sup>, SIDIS on <sup>3</sup>He, (Cond. Appv. TDIS)
- Form factors  $\rightarrow$  \$5M DOE Project
- Total 184 days of running approved (+ 27 cond.)









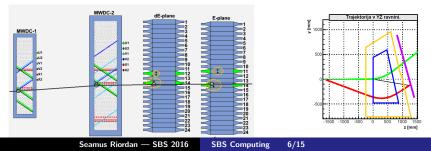


 Several major new systems -Experiments have different combinations

| Several sets of GEM trackers | ${\sim}100$ k strips |
|------------------------------|----------------------|
| Hadronic Calorimeter         | 288 FADC ch          |
| Electromagnetic Calorimeter  | 1700 ADC ch          |
| Scint. Coord. Det            | 2k TDC ch            |
| Gas Cherenkov                | 550 TDC ch           |
| Scintillator Timing Plane    | 360 TDC/ADC ch       |

 Resuse of existing Bigbite EM calorimetery (~200 PMTs), HERMES RICH (~2k PMTs)

## Software Goals


### Need full software chain before start of running

- Need for all stages: development, commissioning, and running
- Event reconstruction and inter-detector correlations will be critical to ensure experimental operation
- High event rates will make experimental analysis difficult
- Require significant coordination between subgroups to be successful
- Software project management for organization

| Home My     | page Projects Easy Gantt Adminis | tration Help |         |         |          |         |     |       |        |         |        |           |         |        |     |         |           |       | Logged i | n as ma | nager  | My acc | ount S | âgn out |
|-------------|----------------------------------|--------------|---------|---------|----------|---------|-----|-------|--------|---------|--------|-----------|---------|--------|-----|---------|-----------|-------|----------|---------|--------|--------|--------|---------|
| Busin       | ess Implementati                 | on of Ea     | isy R   | edmi    | ne       |         |     |       |        |         | ch:    |           |         |        |     | Busin   | ess Imp   | lemen | tation o | f Easy  | Redmi  | ne     |        | ۲       |
|             |                                  |              |         |         |          |         |     |       |        |         |        |           |         |        |     |         |           |       |          |         |        |        |        |         |
| Overvie     | w Activity Roadmap               | Issues Ne    | w issue | Gantt   | Do       | cume    | nts | Easy  | Santt  | Set     | tings  |           |         |        |     |         |           |       |          |         |        |        |        |         |
| Issues      | gantt                            |              |         |         |          |         |     |       |        |         |        |           |         |        |     |         |           |       |          |         |        |        |        |         |
| - > Filters | -                                |              |         |         |          |         |     |       |        |         |        |           |         |        |     |         |           |       |          |         |        |        |        |         |
| - > Option  |                                  |              |         |         |          |         |     |       |        |         |        |           |         |        |     |         |           |       |          |         |        |        |        |         |
|             |                                  |              |         |         |          |         |     |       |        |         |        |           |         |        |     |         |           |       |          |         |        |        |        |         |
| 🖌 Apply     | Clear                            |              |         |         |          |         |     |       |        |         |        |           |         |        |     |         |           |       |          |         |        |        |        |         |
|             |                                  |              |         |         |          |         |     |       |        |         |        |           |         |        |     | -       |           |       |          |         |        |        |        |         |
|             | Back 📄 Print 👒 Day               | s 🔍 Wee      | eks     | 💐 Month | 15       | / Ed    | it  | () Ne | w issu | e       | 🚹 ке   | source    | mana    | igeme  | nt  | - Ci    | ritical ( | bath  |          | Create  | baseli | ne     |        |         |
|             |                                  |              |         |         |          |         |     |       |        |         |        |           |         |        |     |         |           |       |          |         |        |        |        |         |
| #           | Subject                          | Assignee     | Upd     |         |          |         |     |       |        |         |        |           |         |        |     |         |           |       |          |         |        |        |        |         |
|             |                                  |              |         | :4 25   | 26       | 27      | 28  | 29    | 30     | 31      | 01     | 02        | 03      | 04     | 05  | 06      | 07        | 08    | 09       | 10      | 11     | 12     | 13     | 14      |
| #263        | Training for users               |              | a mon   | Irai    | ning for | r users | _   |       |        |         |        |           |         |        |     |         |           |       |          |         |        |        |        | *       |
| #260        | E-learning for Admins            | Client *     | 2 day   |         |          | _       |     | E-le  | arning | for Ad  | mins   |           |         |        |     |         |           |       |          |         |        |        |        |         |
| #255        | Roles, Trackers, Statuses, (     |              | 5 day   | _       | _        |         |     |       | Role   | es, Tra | ckers, | Statuses  | s, Cust | om Fie | lds |         |           |       |          |         |        |        |        |         |
| #262        | Admin Training                   | 1.1          | 2 day   |         |          |         |     | 1     | 1      |         | Adr    | nin Traii | ning    |        |     |         |           |       |          |         |        |        |        |         |
| #257        | Projects Structure + Templa      |              | 5 day   |         |          |         |     |       |        |         | 1      | -         |         | -      | Pro | iects S | Inicture  | + Tem | Inlates  |         |        |        |        | _       |

## Detector Subsystem Software

- Add to analyzer framework GEMs, CDet, GRINCH, ECal, RICH, Bigbite
- Have GEM classes from previous experiments integrated with TreeSearch tracking test of clustering algorithms
  - Probably single most difficult task
- New decoders that need to be written
  - MPD written and available in repository
  - Need analysis class for HCal FADCs
- Expect much will be done during construction and early commissioning
- Event displays required
- Individual hardware development groups have taken on responsibility

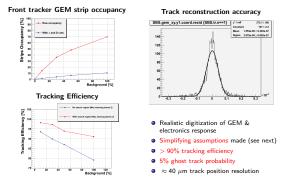


## Subsystem Responsibilities

### General Purpose Software

| analyzer Development   | Hansen                |
|------------------------|-----------------------|
| Front End Decoders     | Camsonne              |
| Event Reassembly       | JLab DAQ Group        |
| SBS S                  | Specific              |
| Repository Maintenance | Riordan               |
| MPD Decoding           | SBU, JLab, UVA, INFN  |
| GEM Tracking           | INFN, JLab            |
| HCal Analysis          | Franklin              |
| ECal Analysis          | Puckett               |
| Coord. Det             | CNU (Monaghan, Brash) |
| GRINCH                 | Averett               |
| BigBite Legacy         | Riordan               |
|                        |                       |

|       |         | Experiment Analysis Specific              |
|-------|---------|-------------------------------------------|
| GMn   | Quinn   | Bigbite, HCal                             |
| GEn   | Riordan | Bigbite, HCal, <sup>3</sup> He target     |
| GEp   | Cisbani | ECal, Coord. det, SBS w/ trackers         |
| SIDIS | Puckett | Bigbite, SBS w/ trackers and RICH         |
| TDIS  | Dutta   | SBS $e^-$ w/ trackers and RICH, LAC, RTPC |

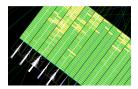

Common: straight tracks (field-free region)

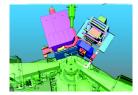
- **BigBite:** GEMs, assisted by ECAL; low rate; BigBite optics
- SIDIS H-arm: GEMs, assisted by HCAL; low rate; 48D48 optics
- **GEp(5)** front: GEMs, restricted to narrow search region; very high rate; requires iterative kinematic correlation analysis; 48D48 optics
- **GEp(5) back:** GEMs, similar search region; high rate; requires bridging between tracker regions

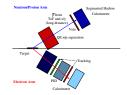
Each item involves (somewhat) different reconstruction algorithm. Significant code sharing possible, <u>if</u> well planned

• Expect rates up to  $\sim 500~{\rm kHz/cm^2}$  for most challenging kinematics

#### 2011 GEp(5) Tracking Study: Results (with Vahe Mamyan, CMU)





- Significant work already done in tracking under realistic requirements with Hall A TreeSearch algorithm
- Have only done realistic tracking for Front (most difficult) tracker to prove feasilibity
- Have Postdoc Eric Fuchey (UConn) who is presently engaged with using latest simulation and integrating into SBS package


Seamus Riordan — SBS 2016 SBS Computing 9/15

### Experiment Analysis Software

- Need development for analysis of each specific experiment
- Algorithms for PID and associating between detectors/arms needs to be in place
- Optics, spin transport, target specific analysis very important
- Databasing long time-scale variables not in EPICS (e.g. target polarization)
- Scripts for commissioning and calibration







# Further Experiment Analysis Software

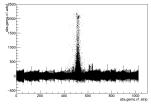
- Major goal of "end to end" simluation with production of pseudodata - simulation of data sizes
- Requires realistic digitization of new subsystems from Geant4 responses
- Ultimate demonstration of event-by-event analysis for full experiment
- Non-trivial and requires well definined standards/interfaces for flexible design



# Data Storage and Computing Requirements

|               |              | Days | Data rate<br>MB/s | Seconds  | Total<br>data TB |
|---------------|--------------|------|-------------------|----------|------------------|
| E12-12-09-019 | GMN          | 25   | 1000              | 2160000  | 2160             |
| E12-09-016    | GEN          | 50   | 1000              | 4320000  | 4320             |
| E12-07-109    | GEP/G<br>MP  | 45   | 1000              | 3888000  | 3888             |
| E12-09-018    | SIDIS        | 64   | 1000              | 5529600  | 5529.6           |
|               |              |      |                   |          |                  |
|               | Total        | 184  |                   | 15897600 | 15897.6          |
| Actual days   | Actual years |      | Time in s         |          |                  |
| 368           | 1.01         | 184  | 15897600          |          |                  |

- Estimates for data sizes calculated expect 300-400 MB/s 1GB/s assumed upper bound  $\rightarrow$  16 TB total to tape
- kHz analysis rate  $\rightarrow$  40k CPU hours over  $\sim 5$  years
- Data rates primarily driven by GEM channels (  $\sim$ 100k)


# Current Status

Have working whitepaper and repository
http://cinder.physics.sunysb.edu/~seamus/sbs/sim\_whitepaper.pdf
http://github.com/JeffersonLab/SBS-offline

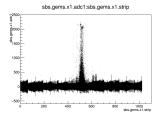
- Now transitioning from hardware development to analysis
- Responsibilities within subgroups defined
- Raw data analysis chain partially defined
  - Resuing existing framework from legacy detectors
  - GEM MPD decoding with examples
  - OLYMPUS collaborators with operational GEM experience
  - Remaining systems need skeletal definition for subgroups to fill in
- Postdoc Eric Fuchey (UConn) actively working on next iteration of tracking

|                               | ode for SeperBigBite (SBS) experiments       |                          |                                     |
|-------------------------------|----------------------------------------------|--------------------------|-------------------------------------|
| ©# served.                    |                                              | 0 di minana              | III secolulars                      |
| back magazy Kerpeling         | 100                                          |                          | Field for                           |
| 🗄 anamusetlenden Dange delle. | Freedbell's aboves                           |                          | Calmin commit Television 7 dages an |
| B SCANA                       | Remove-belonging extput                      |                          | 2.6(10                              |
| 2 offerers                    | Addingstopene                                |                          | 10 depart                           |
| S MPERIODIR OX                | Setup with our own GEM datase to avoid t     | ups text this for new    | # digto                             |
| Q APOINTA A                   | initial commit of MPG decoder Explicite resp | ires separate Treefaarsh | 10 April                            |
| 8 MARN                        | Stop with our own SEM datase to avoid 1      | ups we the for now       | 1.0(1.0                             |
| R Machine and                 | Add inputential and surve appreciate         |                          | 2 dapt a                            |
| B Millighteon                 | Initial current of MPD decode TopEtte-rep    |                          | 25.041.0                            |
| C Millighten                  | initial commit of MPG decoder Explicite resp | ires separate Deallearsh | 10 depart                           |
| B 18355MPlank.co              | All Epidetic and two apprentit               |                          | 2.0(10                              |
| SBSCENPlane.h                 | Add is patiential and same suppression       |                          | 2 dapa a                            |
| B 1835 EMBard On              | All Epidetic and two apprentic               |                          | 2.0(10                              |
| SBSCEMStand.h                 | Setup with our own GDM dates in avoid 1      |                          | Ediptor                             |
|                               |                                              |                          |                                     |

sbs.gems.x1.adc1:sbs.gems.x1.strip



### Future SBS Software Milestones


- Nov 2016 Software Review
- Jan 2017 Start Digitized Simulation Output
- Apr 2017 Decoders for all DAQ modules written
- Jul 2017 Each detector system in analyzer, experiment configurations, basic reconstruction algorithms
  - Can fully analyze raw data at this point
- Dec 2017 Simulation Interfaced to analysis, Have detector event displays, calibration scripts
- Jan 2018 Start simulated analysis for detector reconstruction
- Jun 2018 Begin simulated experimental analysis for core form factor experiments
- Jan 2019 Ready for beam for form factor, start simulated experimental analysis for SIDIS and TDIS
- Spring 2019 likely earliest start of neutron experiments
- Spring 2020 likely earliest start for GEp

- Software efforts by collaboration have been significantly ramping up over last year
- Now focusing on work for raw data analysis and tracking and then transition to full event reconstruction
- Tasks and milestones are defined for period up to running

### BACKUP

# **GEM-Specific Work**

- GEM test stand used with CODA readout
- Decoding done with stand-alone reading directly EVIO
- Have done integration with modular decoder (analyzer 1.6) based on Danning and Evaristo's work
- Must get TreeSearch algorithm and existing (modified) GEM classes to work with this decoder
- Improved GEM digitization using UVA commissioning data
  - Underway by UVA



- SBS-offline repository
- http://github.com/ JeffersonLab/ SBS-offline
- Has example code and databases to replay