Extracting the Cross Section of $(\gamma, \rho^- p)$ in Deuteron

Cheng-Wei (Oscar) Lin Massachusetts Institute of Technology

Breit-Wigner Convolve with Gaussian

Old Version Simulation: 1M events Non-relativistic Breit-Wigner

Fitting function for thrown:

 $f(m_{2\pi}) \propto \frac{1}{(m_{2\pi})}$

Fitting function for reconstructed:

$$F(m_{2\pi}) \propto f * G = \int_{-\infty}^{\infty} dx$$

$$\frac{1}{2\pi - M_{\rho}^{2} + \Gamma_{0}^{2}/4}$$

 $f(m'_{2\pi})G(m_{2\pi} - m'_{2\pi}; \sigma)dm'_{2\pi}$

Breit-Wigner Convolve with Gaussian

Convolution vs. w/o Convolution

Review Previous Result

This plot shows we used improper fitting function to fit the simulation data which produced by BW.

In addition, we did not consider the detector resolution effect.

Corrected Simulation

Nonresonant Contribution

Acceptance, Efficiency, and Bin Migration

 $A \times \epsilon \times C_{BM} = \frac{\# \ accept}{\# \ thrown} \cdot \frac{\# \ detected}{\# \ accept} \cdot \frac{\# \ recon}{\# \ detected} \cdot \frac{\# \ skimmed}{\# \ recon}$

Back Up

11

The mass shift is from interference

•
$$\frac{dN}{dM_{2\pi}} = A \cdot \frac{\Gamma_{\rho}M_{\rho}M_{2\pi}}{(M_{\rho}^2 - M_{2\pi}^2)^2 + M_{\rho}^2\Gamma_{\rho}^2} + R$$

- $\Gamma_{\rho} = (q/q_0)^3 \cdot \Gamma_0 \cdot M_{\rho}/M_{2\pi}$
- q is the pion momentum in the center-of-mass frame, and q_0 for $M_{\pi^-\pi^0} = M_{\rho^-}$

 $B \cdot \frac{2\sqrt{M_{\rho}M_{2\pi}\Gamma_{\rho}} \cdot (M_{\rho}^2 - M_{2\pi}^2)}{(M_{\rho}^2 - M_{2\pi}^2)^2 + M_{\rho}^2\Gamma_{\rho}^2} + poly2$

The mass shift is from interference

•
$$\frac{dN}{dM_{2\pi}} = A \cdot \frac{\Gamma_{\rho}M_{\rho}M_{2\pi}}{(M_{\rho}^2 - M_{2\pi}^2)^2 + M_{\rho}^2\Gamma_{\rho}^2} + R$$

- $\Gamma_{\rho} = (q/q_0)^3 \cdot \Gamma_0 \cdot M_{\rho}/M_{2\pi}$
- q is the pion momentum in the center-of-mass frame, and q_0 for $M_{\pi^-\pi^0} = M_{\rho^-}$

 $B \cdot \frac{2\sqrt{M_{\rho}M_{2\pi}\Gamma_{\rho}} \cdot (M_{\rho}^2 - M_{2\pi}^2)}{(M_{\rho}^2 - M_{2\pi}^2)^2 + M_{\rho}^2\Gamma_{\rho}^2} + poly2$

Fitting Function:

Relativistic Breit Wigner Distribution + poly2

There is an apparent mass shift

Preliminary Cross-section Distribution

Large Error Bar

Large Error Bar

17

Comparsion

Normalization

$$\frac{\Delta N_{sim}}{\Delta t} = A_{sim} \cdot \int BW \, dM = N_{tot} \cdot \frac{\left(\frac{d\sigma}{dt}\right)_0}{\sigma_{tot}} \cdot \epsilon \cdot A$$
$$\frac{\int BW \, dM}{A_{sim} \cdot \int BW \, dM} \cdot \frac{N_{tot} \cdot \left(\frac{d\sigma}{dt}\right)_0}{\sigma_{tot}} = \frac{A_{exp}}{A_{sim}} \times \frac{1}{L \cdot T \cdot Br} \cdot \frac{N_{tot} \cdot \left(\frac{d\sigma}{dt}\right)_0}{\sigma_{tot}}$$

$$\frac{\Delta N_{sim}}{\Delta t} = A_{sim} \cdot \int BW \, dM = N_{tot} \cdot \frac{\left(\frac{d\sigma}{dt}\right)_0}{\sigma_{tot}} \cdot \epsilon \cdot A$$
$$\frac{d\sigma}{dt} = \frac{A_{exp} \cdot \int BW \, dM}{L \cdot T \cdot Br \cdot A_{sim} \cdot \int BW \, dM} \cdot \frac{N_{tot} \cdot \left(\frac{d\sigma}{dt}\right)_0}{\sigma_{tot}} = \frac{A_{exp}}{A_{sim}} \times \frac{1}{L \cdot T \cdot Br} \cdot \frac{N_{tot} \cdot \left(\frac{d\sigma}{dt}\right)_0}{\sigma_{tot}}$$

$$\times \frac{1}{L \cdot \epsilon \cdot A \cdot T \cdot Br}$$

$$A_{exp} \cdot \int BW \, dM$$

Normalization

Jackson's Version

$$\begin{split} N_{tot} &= 10^{6} & N_{tot} = 6 \times 10^{6} \\ \left(d\sigma/dt \right)_{0} &= 1 \quad \left[nb/GeV^{2} \right] & \left(d\sigma/dt \right)_{0} = 1 \quad \left[nb/GeV^{2} \right] \\ \sigma_{tot} &= 14.21847 \pm 0.00774 \quad \left[nb \right] & \sigma_{tot} = 14.51334 \pm 0.00704 \quad \left[nb \right] \\ L_{exp} &= 17960 \quad \left[nb^{-1} \right] & L_{exp} = 17960 \quad \left[nb^{-1} \right] \\ Br &= Br(\pi^{0} \to 2\gamma) \cdot Br(\rho^{-} \to \pi^{-}\pi^{0}) & Br = Br(\pi^{0} \to 2\gamma) \cdot Br(\rho^{-} \to \pi^{-}\pi^{0}) \\ &= 98.823\% \cdot 1 & = 98.823\% \cdot 1 \end{split}$$

My Version

Nonresonant Contribution

$$\begin{aligned} \frac{dN}{dM_{2\pi}} &= A \cdot \frac{\Gamma_{\rho} M_{\rho} M_{2\pi}}{(M_{\rho}^2 - M_{2\pi}^2)^2 + M_{\rho}^2 \Gamma_{\rho}^2} + B \cdot \frac{2\sqrt{M_{\rho} M_{2\pi} \Gamma_{\rho}} \cdot (M_{\rho}^2 - M_{2\pi}^2)}{(M_{\rho}^2 - M_{2\pi}^2)^2 + M_{\rho}^2 \Gamma_{\rho}^2} + poly2\\ \Gamma_{\rho} &= (\sqrt{q/q_0})^3 \cdot \Gamma_0 \cdot M_{\rho} / M_{2\pi} \end{aligned}$$

The interference strength |B/A| decreases as high t

ZEUS Result

ZEUS Collaboration, "Elastic and proton dissociative ρ^0 photoproduction at HERA", Eur. Phys. J. C 2 (1998) 247

Giese, R. (SLAC) Photoproduction of rho Mesons from Hydrogen and Deuterium from 9-GeV to 16-GeV P.Soding, "On the apparent shift of the p meson mass in photoproduction", Phys.Lett. 19 (1966) 702

GCF Generator 6M Events BKG: random trigger Fixed ρ^- mass and width

Thrown simulation

Thrown simulation

GCF Generator

Next Step

switch to phase-space correction relativistic Breit-Wigner function

$$\frac{dN}{dM_{2\pi}} \propto \frac{\Gamma_{\rho} M_{\rho} M_{2\pi}}{(M_{\rho}^2 - M_{2\pi}^2)^2 + M_{\rho}^2 \Gamma_{\rho}^2}, \ \Gamma_{\rho} = (q/q_0)^3 \cdot \Gamma_0 \cdot M_{\rho} / M_{2\pi}$$

• It turns out that the generator is using the regular Breit Wigner function.

Previous GlueX Result

Generator 3.1

We use the gen_amp generator included in the halld_sim framework to simulate the process $p\pi^+\pi^-$. We assume an exponential 4-momentum transfer distribution e^{bt} with the slope para $b = 6 (\text{GeV}/c)^{-2}$. Since the GlueX experiment accepts only exclusive events with |t| above imal 4-momentum transfer of $0.1 \, (\text{GeV}/c)^2$, we simulated only events with $-t > 0.05 \, (\text{Ge}/c)^2$ for efficiency purposes. This simplified model does not reproduce the experimentally obs *t*-distribution exactly (cf. Fig. 7a), but serves as a good approximation when binning finely

We restricted the MC sample to the analyzed range in $\pi^+\pi^-$ invariant mass between 0 $0.88 \,\mathrm{GeV}/c^2$. We modeled the shape of the invariant mass using a relativistic Breit-Wigner tion [21] with the orbital angular momentum barrier factor F [22] according to L = 1:

$$BW(m) = \frac{\sqrt{m_0 \Gamma_0}}{m^2 - m_0^2 - i\Gamma(m,L)}$$

$$\Gamma(m,L) = \Gamma_0 \frac{q}{m} \frac{m_0}{q_0} \left[\frac{F(q,L)}{F(q_0,L)} \right]^2$$

where q signifies the breakup momentum. The reconstructed mass distribution reproduces perimentally measured one with the parameters $m_0 = 0.757 \,\text{GeV}/c^2$ and $\Gamma_0 = 0.146 \,\text{GeV}/c^2$ ure 7b). The apparent shift of the resonance mass by about $18 \text{MeV}/c^2$ compared to the PDG value [18] will be discussed in Appendix E.

ameter a min- $eV/c)^2$ oserved in <i>t</i> . 0.6 and r func-	GlueX Analysis Note: Spin-Density Matrix Elements for ρ(770) Meso Photoproduction
	Alexander Austregesilo ¹ , Naomi S. Jarvis ² and Curtis A. Meyer ²
(2)	¹ TJNAF ² CMU
(3)	March 30, 2023
the ex- (cf. Fig-	

The mass shift is from interference

- We need to consider the interference from non-resonant $\pi\pi$
- Have been observed in ALICE, CMS, STAR, etc.
- Several parameterizations of the shape exist
- Soding Model lacksquare

$$\begin{split} \frac{\mathrm{d}N_{\pi^{+}\pi^{-}}}{\mathrm{d}M_{\pi^{+}\pi^{-}}} &= \left| A \frac{\sqrt{M_{\pi^{+}\pi^{-}}M_{\rho\,(770)}\Gamma_{\rho\,(770)}}}{M_{\pi^{+}\pi^{-}}^{2} - M_{\rho\,(770)^{0}}^{2} + iM_{\rho\,(770)^{0}}\Gamma_{\rho\,(770)}} + B + C\mathrm{e}^{i\phi_{\omega}} \frac{\sqrt{M_{\pi^{+}\pi^{-}}M_{\omega\,(783)}}\Gamma_{\mu^{2}}}{M_{\pi^{+}\pi^{-}}^{2} - M_{\omega\,(783)}^{2} + iM_{\mu^{2}}} \right|^{\frac{3}{2}}, \\ \Gamma_{\rho\,(770)} &= \Gamma_{0} \frac{M_{\rho\,(770)^{0}}}{M_{\pi^{+}\pi^{-}}} \left[\frac{M_{\pi^{+}\pi^{-}}^{2} - 4m_{\pi^{\pm}}^{2}}{M_{\rho\,(770)^{0}}^{2} - 4m_{\pi^{\pm}}^{2}} \right]^{\frac{3}{2}}, \\ \Gamma_{\omega\,(783)} &= \Gamma_{0} \frac{M_{\omega\,(783)}}{M_{\pi^{+}\pi^{-}}} \left[\frac{M_{\pi^{+}\pi^{-}}^{2} - 9m_{\pi^{\pm}}^{2}}{M_{\omega\,(783)}^{2} - 9m_{\pi^{\pm}}^{2}} \right]^{\frac{3}{2}}, \end{split}$$

