Rate vs. 0.1

$$
\gamma+p \rightarrow \rho p \rightarrow \pi^{+} \pi^{-} p
$$

Nathaly Santiesteban

Recalling for ${ }^{4} \mathrm{He}$

$$
\begin{aligned}
& E_{\gamma}>7 \mathrm{GeV} \\
& -\mathrm{t}>1 \mathrm{GeV}^{2} \\
& -\mathrm{u}>2 \mathrm{GeV}^{2}
\end{aligned}
$$

Note: horizontal lines represent the bin size

From Empty Cell runs

Runs: 30333, 30334, 30336, 30337, 30564, 30728, 40903, 41386, 41615, 51011, 51013, 51556 Total Flux: $1.55 \mathrm{E}+12 \gamma$ on target for the empty cell run
Number of events calculated estimating: 2E7 γ / s

Note: horizontal lines represent the bin size

Note: the empty cell used an amorphous radiator

Tagged flux

Tagged flux

Hall D LH2 Cryotarget

Values listed below are nominal. Final dimensions will be determined on an as-built basis.
CD Keith, Jan 28, 2014

Item	Material	$\begin{aligned} & \text { E position } \\ & (\mathrm{cm}) \end{aligned}$	Density ($\mathrm{g} / \mathrm{cm}^{3}$)	Dimensions (cm)
Target entrance window	Kapton, 75um	(cm)	1.42^{1}	1.56 id, 75 um thick
Target fluid, conical $\sim 18 \mathrm{~K}, 16 \mathrm{psiA}$	Liquid hydrogen, 30 cm	0-30	0.0734^{2}	2.42 dia. at entrance 1.56 dia. at exit
Target Exit window	Kapton, 75 um)	30	1.42	1.56 id
Super-insulation	Aluminizedmylar+cerex (5 layers)	30	$2.9 \mathrm{mg} / \mathrm{cmI}^{2}$ per layer ${ }^{3}$	
Scattering chamber exit window	Aluminum, 25 um	TBD	2.70	2.54 dia.
Target cell, conical (not in beam path)	Aluminized kapton, 127 um	--	1.42	2.42 id atent window 1.56 id at exit window
Super-insulation (not in beam path)	Aluminizedmylar+cerex (5 layers)	--	$\begin{aligned} & 2.9 \mathrm{mg} / \mathrm{cm}^{2} \\ & \text { per layer } \end{aligned}$	--
Scattering chamber ${ }^{6}$ (not in beam path)	Aluminum-lined Rohacell	--	$\sim 110 \mathrm{mg} / \mathrm{cm}^{3}$	11.1 OD, 1 thick

Data is analyzed by selecting windows 2 and 3

	$\mathrm{g} / \mathrm{cm} 3$	Lengh $[\mathrm{mm}]$	Atoms/cm2
Kapton	1.42	0.01	$8.55 \mathrm{E}+25$
Aluminum	2.7	0.0025	$6.5 \mathrm{E}+26$

To calculate the rate from the simulation for the end-caps:
Thickness: 1.73E20
Flux: 2E7 γ / s
Scale it by :

$$
\begin{aligned}
& \rho\left({ }^{4} \mathrm{He}\right)=0.117 \mathrm{~g} / \mathrm{cm}^{3} \\
& \rho(\text { Kapton })=2.7 \mathrm{~g} / \mathrm{cm}^{3} \\
& \rho(\mathrm{Al})=1.42 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

$\left(0.2^{*} \rho(\mathrm{Al})+0.8^{*} \rho(\right.$ Kapton $\left.)\right) / \rho\left({ }^{4} \mathrm{He}\right)=14.32$

$$
N_{e v}=\sigma \cdot \text { flux } \cdot \text { thickness } \cdot 14.32
$$

Units:

$$
\text { [ev / hour] }=[\mathrm{nb}][\gamma / \text { hour] [atoms /nb] }
$$

Current work

* Understanding the efficiencies:

Why they are lower than 50% ?

Current work

- Use the proper thickness of the target.

+ Data
 MF+SRC Simulation MF Simulation
 SRC Simulation

* Implement the final conclusion in the offline monitoring to properly normalize the data.

Plots are area normalized to match the data.

For monitoring

* Currently for Monitoring
* 2pi1p Plugins creates a root file with all candidates. Running time: $\sim 6-8$ hours in a raw data file and ~ 2 hours in a rest file
* Macro reads the root file and make the plots.

$$
\begin{aligned}
& E_{\gamma}>7 \mathrm{GeV} \\
& -\mathrm{t}>1 . \mathrm{GeV}^{2} \\
& -\mathrm{u}>2 \mathrm{GeV}^{2}
\end{aligned}
$$

${ }^{4} \mathrm{He}$

