# DIRC alignment Closure Tests







# Misalignments

- After installation the optical box will be filled by distilled water (refraction index close to bars).
- Optical box made by several components, system for calibration.
- During data-taking this becomes a black-box problem with many non-differentiable terms.
  - relative alignment of the tracking system with the location and angle of the bars
  - mirrors shifts cause parts of the image change
  - $\circ$  other offsets
- These aspects make seemingly impossible to analytically understand the change in PMT pattern

#### # offsets ≥ O(10)

#### Pure sample of particles for alignment

- The idea is to use pure sample of pions produced by abundant channels like ρ decays
- At low momentum they are well identified by current GlueX PID capabilities.
- Use these pions as candles for alignment.
- Test alignment with one bar first and for a subrange of kinematics (momentum, angles, and position in the bar) *proof of principle*
- Generalize technique (to kaons, other bars, etc. )





# 7D with main offsets - preliminary





Recipe: For each call of the optimizer, M offset points are explored using N different particles (for each call). The total number of calls is T T=120 M=10 N=125 Particles used = 15000 Points explored = 1200

FoM = LogL normalized to a default alignment

(7D)

3-seg mirror angles and spatial offsets (deemed the most critical for alignment) within the tolerances.

# 7D with main offsets - preliminary





Recipe: For each call of the optimizer, M offset points are explored using N different particles (for each call). The total number of calls is T T=120 M=10 N=125 Particles used = 15000 Points explored = 1200

FoM = LogL normalized to a default alignment

(7D)

3-seg mirror angles and spatial offsets (deemed the most critical for alignment) within the tolerances.

#### **Resolutions Vs Offsets**



| correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | calibrated                                                                                                                           | nominal                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 3-seg mirror:<br>θx,θy,θz=(0.25,0.50,0.15) deg,<br>y = 0.5 mm;<br>bar z = 2.0 mm;<br>PMT (r,θ)=(1.5 mm,1.0 deg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-seg mirror:<br>θx,θy,θz=(0.2485, 0.5832, 0.1171) deg,<br>y = 0.5894 mm;<br>bar z = 2.0788 mm;<br>PMT (r,θ)=(1.8690 mm, 1.3544 deg) | 3-seg mirror:<br>θx,θy,θz=(0., 0., 0.) deg,<br>y = 0. mm;<br>bar z = 0. mm;<br>PMT (r,θ)=(0. mm, 0. deg) |
| $ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $ | Eff. Reso: <b>1.599</b> mrad<br>0.6 Reso per γ: <b>8.411</b> mrad<br>0.4 AUC: <b>99.83%</b>                                          | Eff. Reso: 2.041 mrad<br><sup>0.6</sup> Reso per γ: 10.725 mrad<br><sup>0.4</sup> AUC: 98.9%             |
| Kaon Elliclency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kaon Enciency                                                                                                                        | Kaon Elliciency                                                                                          |

Kinematics: (E ,  $\theta$ ,  $\phi$ ): (4 GeV, 4 deg, 40 deg)

### Extending to more bars





### Extending to more bars







|          | eff. res<br>[mrad] | res/γ<br>[mrad] | AUC<br>(%) |
|----------|--------------------|-----------------|------------|
| real     | 1.42               | 7.53            | 99.9       |
| calib    | 1.42               | 7.53            | 99.9       |
| non-corr | 1.85               | 9.83            | 99.4       |

Kinematics: (E,  $\theta$ ,  $\phi$ ): (4 GeV, 4 deg, 40 deg)





# **3D** combining different particles



