DIRC alignment Closure Tests

C. Fanelli

Updated on 11.18.2018

Misalignments

- After installation the optical box will be filled by distilled water (refraction index close to bars).
- Optical box made by several components, system for calibration.
- During data-taking this becomes a black-box problem with many non-differentiable terms.
- relative alignment of the tracking system with the location and angle of the bars
- mirrors shifts cause parts of the image change
- other offsets
- These aspects make seemingly impossible to analytically understand the change in PMT pattern

$$
\# \text { offsets } \gtrsim \mathrm{O}(10)
$$

Pure sample of particles for alignment

- The idea is to use pure sample of pions produced by abundant channels like ρ decays
- At low momentum they are well identified by current GlueX PID capabilities.
- Use these pions as candles for alignment.
- Test alignment with one bar first and for a subrange of kinematics (momentum, angles, and position in the bar) - proof of principle
- Generalize technique (to kaons, other bars, etc.)

7D with main offsets - preliminary

Recipe: For each call of the optimizer, M offset points are explored using N different particles (for each call). The total number of calls is T $\mathrm{T}=120 \quad \mathrm{M}=10 \mathrm{~N}=125$
Particles used = 15000
Points explored $=1200$
FoM = LogL normalized to a default alignment

7D with main offsets - preliminary

Recipe: For each call of the optimizer, M offset points are explored using N different particles (for each call). The total number of calls is T $\mathrm{T}=120 \quad \mathrm{M}=10 \mathrm{~N}=125$
Particles used $=15000$
Points explored $=1200$
FoM = LogL normalized to a default alignment
PMT $(r, \theta)=1.8690 \mathrm{~mm}, 1.3544 \mathrm{deg}$

3-seg mirror angles and spatial offsets (deemed the most critical for alignment) within the tolerances.

Resolutions Vs Offsets

correct

3-seg mirror:
$\theta x, \theta y, \theta z=(0.25,0.50,0.15) \mathrm{deg}$,
$\mathrm{y}=0.5 \mathrm{~mm}$;
bar $\mathbf{z}=2.0 \mathrm{~mm}$;
PMT $(\mathbf{r}, 0)=(1.5 \mathrm{~mm}, 1.0 \mathrm{deg})$
calibrated
3-seg mirror:
$\theta x, \theta y, \theta z=(0.2485,0.5832,0.1171)$ deg, $\mathrm{y}=0.5894 \mathrm{~mm}$; bar $\mathbf{z}=2.0788 \mathrm{~mm}$;
PMT $(r, 0)=(1.8690 \mathrm{~mm}, 1.3544 \mathrm{deg})$

nominal

3-seg mirror:
$\theta \mathrm{x}, \theta \mathrm{y}, \theta \mathrm{z}=(0 ., 0 ., 0)$.deg , y = 0. mm; bar z = 0. mm;
PMT $(r, 0)=(0 . \mathrm{mm}, 0 . \mathrm{deg})$

Kinematics: (E , θ, φ): (4 GeV, 4 deg, 40 deg)

Extending to more bars

	$\theta \mathrm{x}$ $[\mathrm{deg}]$	$\theta \mathrm{y}$ $[\mathrm{deg}]$	θz $[\mathrm{deg}]$	y $[\mathrm{mm}]$	bz $[\mathrm{mm}]$
real	-0.25	0.50	0.15	-0.5	-0.9
calib	-0.26	0.46	0.16	-0.7	-1.1

$\mathrm{T}=100 \mathrm{M}=10 \mathrm{~N}=100$
Particles used $=10000$
Points explored $=1000$
FoM = LogL normalized to a default alignment
10 bars from 1 bar box
$x \in[16,50] \mathrm{cm}$
$y \in[-50,50] \mathrm{cm}$
$E \in[2.5,3.0][\mathrm{GeV}]$
$\theta \in[2.0,4.0]$ [deg],
$\varphi \in[1,45]$ [deg]

Extending to more bars

	eff. res $[\mathrm{mrad}]$	$\mathrm{res} / \mathrm{Y}$ $[\mathrm{mrad}]$	AUC $(\%)$
real	1.42	7.53	99.9
calib	1.42	7.53	99.9
non-corr	1.85	9.83	99.4

Kinematics:
(E , θ, φ): (4 GeV, 4 deg, 40 deg)

BACKUP

Gul ШIT

3D combining different particles

Toy-model: sampling 100 pions/call in range E [GeV], θ [deg], φ [deg]: [2.5,3.0], [2,4], [1,45]

